Cargando…
Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking
[Image: see text] A hexagonal analogue, Li(6)SiO(4)Cl(2), of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation–experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8029579/ https://www.ncbi.nlm.nih.gov/pubmed/33840895 http://dx.doi.org/10.1021/acs.chemmater.1c00157 |
_version_ | 1783676042139926528 |
---|---|
author | Morscher, Alexandra Dyer, Matthew S. Duff, Benjamin B. Han, Guopeng Gamon, Jacinthe Daniels, Luke M. Dang, Yun Surta, T. Wesley Robertson, Craig M. Blanc, Frédéric Claridge, John B. Rosseinsky, Matthew J. |
author_facet | Morscher, Alexandra Dyer, Matthew S. Duff, Benjamin B. Han, Guopeng Gamon, Jacinthe Daniels, Luke M. Dang, Yun Surta, T. Wesley Robertson, Craig M. Blanc, Frédéric Claridge, John B. Rosseinsky, Matthew J. |
author_sort | Morscher, Alexandra |
collection | PubMed |
description | [Image: see text] A hexagonal analogue, Li(6)SiO(4)Cl(2), of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation–experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and vacancy ordering within a cubic stacking of two close-packed layers. Construction of models that assemble these layers with the combination of hexagonal and cubic stacking motifs, both well known in the large family of perovskite structural variants, followed by energy minimization identifies Li(6)SiO(4)Cl(2) as a stable candidate composition. Synthesis and structure determination demonstrate that the material adopts the predicted lithium site-ordered structure with a low lithium conductivity of ∼10(–10) S cm(–1) at room temperature and the predicted hexagonal argyrodite structure above an order–disorder transition at 469.3(1) K. This transition establishes dynamic Li site disorder analogous to that of cubic argyrodite solid electrolytes in hexagonal argyrodite Li(6)SiO(4)Cl(2) and increases Li-ion mobility observed via NMR and AC impedance spectroscopy. The compositional flexibility of both argyrodite and perovskite alongside this newly established structural connection, which enables the use of hexagonal and cubic stacking motifs, identifies a wealth of unexplored chemistry significant to the field of solid electrolytes. |
format | Online Article Text |
id | pubmed-8029579 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-80295792021-04-09 Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking Morscher, Alexandra Dyer, Matthew S. Duff, Benjamin B. Han, Guopeng Gamon, Jacinthe Daniels, Luke M. Dang, Yun Surta, T. Wesley Robertson, Craig M. Blanc, Frédéric Claridge, John B. Rosseinsky, Matthew J. Chem Mater [Image: see text] A hexagonal analogue, Li(6)SiO(4)Cl(2), of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation–experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and vacancy ordering within a cubic stacking of two close-packed layers. Construction of models that assemble these layers with the combination of hexagonal and cubic stacking motifs, both well known in the large family of perovskite structural variants, followed by energy minimization identifies Li(6)SiO(4)Cl(2) as a stable candidate composition. Synthesis and structure determination demonstrate that the material adopts the predicted lithium site-ordered structure with a low lithium conductivity of ∼10(–10) S cm(–1) at room temperature and the predicted hexagonal argyrodite structure above an order–disorder transition at 469.3(1) K. This transition establishes dynamic Li site disorder analogous to that of cubic argyrodite solid electrolytes in hexagonal argyrodite Li(6)SiO(4)Cl(2) and increases Li-ion mobility observed via NMR and AC impedance spectroscopy. The compositional flexibility of both argyrodite and perovskite alongside this newly established structural connection, which enables the use of hexagonal and cubic stacking motifs, identifies a wealth of unexplored chemistry significant to the field of solid electrolytes. American Chemical Society 2021-03-02 2021-03-23 /pmc/articles/PMC8029579/ /pubmed/33840895 http://dx.doi.org/10.1021/acs.chemmater.1c00157 Text en © 2021 The Authors. Published by American Chemical Society Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Morscher, Alexandra Dyer, Matthew S. Duff, Benjamin B. Han, Guopeng Gamon, Jacinthe Daniels, Luke M. Dang, Yun Surta, T. Wesley Robertson, Craig M. Blanc, Frédéric Claridge, John B. Rosseinsky, Matthew J. Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking |
title | Li(6)SiO(4)Cl(2): A Hexagonal
Argyrodite Based on Antiperovskite Layer Stacking |
title_full | Li(6)SiO(4)Cl(2): A Hexagonal
Argyrodite Based on Antiperovskite Layer Stacking |
title_fullStr | Li(6)SiO(4)Cl(2): A Hexagonal
Argyrodite Based on Antiperovskite Layer Stacking |
title_full_unstemmed | Li(6)SiO(4)Cl(2): A Hexagonal
Argyrodite Based on Antiperovskite Layer Stacking |
title_short | Li(6)SiO(4)Cl(2): A Hexagonal
Argyrodite Based on Antiperovskite Layer Stacking |
title_sort | li(6)sio(4)cl(2): a hexagonal
argyrodite based on antiperovskite layer stacking |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8029579/ https://www.ncbi.nlm.nih.gov/pubmed/33840895 http://dx.doi.org/10.1021/acs.chemmater.1c00157 |
work_keys_str_mv | AT morscheralexandra li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT dyermatthews li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT duffbenjaminb li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT hanguopeng li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT gamonjacinthe li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT danielslukem li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT dangyun li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT surtatwesley li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT robertsoncraigm li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT blancfrederic li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT claridgejohnb li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking AT rosseinskymatthewj li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking |