Cargando…

Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking

[Image: see text] A hexagonal analogue, Li(6)SiO(4)Cl(2), of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation–experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and...

Descripción completa

Detalles Bibliográficos
Autores principales: Morscher, Alexandra, Dyer, Matthew S., Duff, Benjamin B., Han, Guopeng, Gamon, Jacinthe, Daniels, Luke M., Dang, Yun, Surta, T. Wesley, Robertson, Craig M., Blanc, Frédéric, Claridge, John B., Rosseinsky, Matthew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8029579/
https://www.ncbi.nlm.nih.gov/pubmed/33840895
http://dx.doi.org/10.1021/acs.chemmater.1c00157
_version_ 1783676042139926528
author Morscher, Alexandra
Dyer, Matthew S.
Duff, Benjamin B.
Han, Guopeng
Gamon, Jacinthe
Daniels, Luke M.
Dang, Yun
Surta, T. Wesley
Robertson, Craig M.
Blanc, Frédéric
Claridge, John B.
Rosseinsky, Matthew J.
author_facet Morscher, Alexandra
Dyer, Matthew S.
Duff, Benjamin B.
Han, Guopeng
Gamon, Jacinthe
Daniels, Luke M.
Dang, Yun
Surta, T. Wesley
Robertson, Craig M.
Blanc, Frédéric
Claridge, John B.
Rosseinsky, Matthew J.
author_sort Morscher, Alexandra
collection PubMed
description [Image: see text] A hexagonal analogue, Li(6)SiO(4)Cl(2), of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation–experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and vacancy ordering within a cubic stacking of two close-packed layers. Construction of models that assemble these layers with the combination of hexagonal and cubic stacking motifs, both well known in the large family of perovskite structural variants, followed by energy minimization identifies Li(6)SiO(4)Cl(2) as a stable candidate composition. Synthesis and structure determination demonstrate that the material adopts the predicted lithium site-ordered structure with a low lithium conductivity of ∼10(–10) S cm(–1) at room temperature and the predicted hexagonal argyrodite structure above an order–disorder transition at 469.3(1) K. This transition establishes dynamic Li site disorder analogous to that of cubic argyrodite solid electrolytes in hexagonal argyrodite Li(6)SiO(4)Cl(2) and increases Li-ion mobility observed via NMR and AC impedance spectroscopy. The compositional flexibility of both argyrodite and perovskite alongside this newly established structural connection, which enables the use of hexagonal and cubic stacking motifs, identifies a wealth of unexplored chemistry significant to the field of solid electrolytes.
format Online
Article
Text
id pubmed-8029579
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-80295792021-04-09 Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking Morscher, Alexandra Dyer, Matthew S. Duff, Benjamin B. Han, Guopeng Gamon, Jacinthe Daniels, Luke M. Dang, Yun Surta, T. Wesley Robertson, Craig M. Blanc, Frédéric Claridge, John B. Rosseinsky, Matthew J. Chem Mater [Image: see text] A hexagonal analogue, Li(6)SiO(4)Cl(2), of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation–experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and vacancy ordering within a cubic stacking of two close-packed layers. Construction of models that assemble these layers with the combination of hexagonal and cubic stacking motifs, both well known in the large family of perovskite structural variants, followed by energy minimization identifies Li(6)SiO(4)Cl(2) as a stable candidate composition. Synthesis and structure determination demonstrate that the material adopts the predicted lithium site-ordered structure with a low lithium conductivity of ∼10(–10) S cm(–1) at room temperature and the predicted hexagonal argyrodite structure above an order–disorder transition at 469.3(1) K. This transition establishes dynamic Li site disorder analogous to that of cubic argyrodite solid electrolytes in hexagonal argyrodite Li(6)SiO(4)Cl(2) and increases Li-ion mobility observed via NMR and AC impedance spectroscopy. The compositional flexibility of both argyrodite and perovskite alongside this newly established structural connection, which enables the use of hexagonal and cubic stacking motifs, identifies a wealth of unexplored chemistry significant to the field of solid electrolytes. American Chemical Society 2021-03-02 2021-03-23 /pmc/articles/PMC8029579/ /pubmed/33840895 http://dx.doi.org/10.1021/acs.chemmater.1c00157 Text en © 2021 The Authors. Published by American Chemical Society Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Morscher, Alexandra
Dyer, Matthew S.
Duff, Benjamin B.
Han, Guopeng
Gamon, Jacinthe
Daniels, Luke M.
Dang, Yun
Surta, T. Wesley
Robertson, Craig M.
Blanc, Frédéric
Claridge, John B.
Rosseinsky, Matthew J.
Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking
title Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking
title_full Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking
title_fullStr Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking
title_full_unstemmed Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking
title_short Li(6)SiO(4)Cl(2): A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking
title_sort li(6)sio(4)cl(2): a hexagonal argyrodite based on antiperovskite layer stacking
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8029579/
https://www.ncbi.nlm.nih.gov/pubmed/33840895
http://dx.doi.org/10.1021/acs.chemmater.1c00157
work_keys_str_mv AT morscheralexandra li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT dyermatthews li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT duffbenjaminb li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT hanguopeng li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT gamonjacinthe li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT danielslukem li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT dangyun li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT surtatwesley li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT robertsoncraigm li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT blancfrederic li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT claridgejohnb li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking
AT rosseinskymatthewj li6sio4cl2ahexagonalargyroditebasedonantiperovskitelayerstacking