Cargando…
Mining heterogeneous clinical notes by multi-modal latent topic model
Latent knowledge can be extracted from the electronic notes that are recorded during patient encounters with the health system. Using these clinical notes to decipher a patient’s underlying comorbidites, symptom burdens, and treatment courses is an ongoing challenge. Latent topic model as an efficie...
Autores principales: | Wen, Zhi, Nair, Pratheeksha, Deng, Chih-Ying, Lu, Xing Han, Moseley, Edward, George, Naomi, Lindvall, Charlotta, Li, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8031429/ https://www.ncbi.nlm.nih.gov/pubmed/33831055 http://dx.doi.org/10.1371/journal.pone.0249622 |
Ejemplares similares
-
Inferring multimodal latent topics from electronic health records
por: Li, Yue, et al.
Publicado: (2020) -
Latent disease similarities and therapeutic repurposing possibilities uncovered by multi-modal generative topic modeling of human diseases
por: Kozawa, Satoshi, et al.
Publicado: (2023) -
Deep learning to predict long-term mortality in patients requiring 7 days of mechanical ventilation
por: George, Naomi, et al.
Publicado: (2021) -
Detecting Latent Topics and Trends in Global Publications on Brucellosis Disease Using Text Mining
por: Dastani, Meisam, et al.
Publicado: (2022) -
Linking and mining heterogeneous and multi-view data
por: P, Deepak, et al.
Publicado: (2019)