Cargando…
Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities
Prediction of protein-ligand interactions is a critical step during the initial phase of drug discovery. We propose a novel deep-learning-based prediction model based on a graph convolutional neural network, named GraphBAR, for protein-ligand binding affinity. Graph convolutional neural networks red...
Autores principales: | Son, Jeongtae, Kim, Dongsup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8031450/ https://www.ncbi.nlm.nih.gov/pubmed/33831016 http://dx.doi.org/10.1371/journal.pone.0249404 |
Ejemplares similares
-
A Cascade Graph Convolutional Network for Predicting Protein–Ligand Binding Affinity
por: Shen, Huimin, et al.
Publicado: (2021) -
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
por: Wang, Kaili, et al.
Publicado: (2023) -
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021) -
CurvAGN: Curvature-based Adaptive Graph Neural Networks for Predicting Protein-Ligand Binding Affinity
por: Wu, Jianqiu, et al.
Publicado: (2023) -
Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network
por: Chung, Taesu, et al.
Publicado: (2019)