Cargando…
Machine Learning and Systems Biology Approaches to Characterize Dosage-Based Gene Dependencies in Cancer Cells
Mapping of cancer survivability factors allows for the identification of novel biological insights for drug targeting. Using genomic editing techniques, gene dependencies can be extracted in a high-throughput and quantitative manner. Dependencies have been predicted using machine learning techniques...
Autores principales: | Meng-Lin, Kevin, Ung, Choong Yong, Weiskittel, Taylor M, Chen, Alex, Zhang, Cheng, Correia, Cristina, Li, Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8031731/ https://www.ncbi.nlm.nih.gov/pubmed/33842927 |
Ejemplares similares
-
The Trifecta of Single-Cell, Systems-Biology, and Machine-Learning Approaches
por: Weiskittel, Taylor M., et al.
Publicado: (2021) -
Network Biology-Inspired Machine Learning Features Predict Cancer Gene Targets and Reveal Target Coordinating Mechanisms
por: Weiskittel, Taylor M., et al.
Publicado: (2023) -
Manifold medicine: A schema that expands treatment dimensionality
por: Ung, Choong Yong, et al.
Publicado: (2021) -
Uncovering Pharmacological Opportunities for Cancer Stem Cells—A Systems Biology View
por: Correia, Cristina, et al.
Publicado: (2022) -
De novo individualized disease modules reveal the synthetic penetrance of genes and inform personalized treatment regimens
por: Weiskittel, Taylor M., et al.
Publicado: (2022)