Cargando…
Predicting antimicrobial mechanism-of-action from transcriptomes: A generalizable explainable artificial intelligence approach
To better combat the expansion of antibiotic resistance in pathogens, new compounds, particularly those with novel mechanisms-of-action [MOA], represent a major research priority in biomedical science. However, rediscovery of known antibiotics demonstrates a need for approaches that accurately ident...
Autores principales: | Espinoza, Josh L., Dupont, Chris L., O’Rourke, Aubrie, Beyhan, Sinem, Morales, Pavel, Spoering, Amy, Meyer, Kirsten J., Chan, Agnes P., Choi, Yongwook, Nierman, William C., Lewis, Kim, Nelson, Karen E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8031737/ https://www.ncbi.nlm.nih.gov/pubmed/33780444 http://dx.doi.org/10.1371/journal.pcbi.1008857 |
Ejemplares similares
-
Mechanism-of-Action Classification of Antibiotics by Global Transcriptome Profiling
por: O’Rourke, Aubrie, et al.
Publicado: (2020) -
Genomic and phenotypic characterization of Burkholderia isolates from the potable water system of the International Space Station
por: O’Rourke, Aubrie, et al.
Publicado: (2020) -
Validating the Generalizability of Ophthalmic Artificial Intelligence Models on Real-World Clinical Data
por: Rashidisabet, Homa, et al.
Publicado: (2023) -
Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences
por: Berntsen, Jørgen, et al.
Publicado: (2022) -
To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
por: Amann, Julia, et al.
Publicado: (2022)