Cargando…
Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model
Predictions of COVID-19 case growth and mortality are critical to the decisions of political leaders, businesses, and individuals grappling with the pandemic. This predictive task is challenging due to the novelty of the virus, limited data, and dynamic political and societal responses. We embed a B...
Autores principales: | Watson, Gregory L., Xiong, Di, Zhang, Lu, Zoller, Joseph A., Shamshoian, John, Sundin, Phillip, Bufford, Teresa, Rimoin, Anne W., Suchard, Marc A., Ramirez, Christina M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8031749/ https://www.ncbi.nlm.nih.gov/pubmed/33780443 http://dx.doi.org/10.1371/journal.pcbi.1008837 |
Ejemplares similares
-
Pseudo-likelihood based logistic regression for estimating COVID-19 infection and case fatality rates by gender, race, and age in California
por: Xiong, Di, et al.
Publicado: (2020) -
Applied Bayesian forecasting and time series analysis
por: Pole, Andy, et al.
Publicado: (1994) -
Applied Bayesian forecasting and times series analysis /
por: Pole, Andy
Publicado: (1994) -
Bayesian Sigmoid-Type Time Series Forecasting with Missing Data for Greenhouse Crops
por: Kocian, Alexander, et al.
Publicado: (2020) -
Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches
por: Prieto, Kernel
Publicado: (2022)