Cargando…
MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload
BACKGROUND: Cardiac macrophages (cMPs) are increasingly recognized as important regulators of myocardial homeostasis and disease, yet the role of noncoding RNA in these cells is largely unknown. Small RNA sequencing of the entire miRNomes of the major cardiac cell fractions revealed microRNA-21 (miR...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032214/ https://www.ncbi.nlm.nih.gov/pubmed/33550817 http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050682 |
_version_ | 1783676188720365568 |
---|---|
author | Ramanujam, Deepak Schön, Anna Patricia Beck, Christina Vaccarello, Paula Felician, Giulia Dueck, Anne Esfandyari, Dena Meister, Gunter Meitinger, Thomas Schulz, Christian Engelhardt, Stefan |
author_facet | Ramanujam, Deepak Schön, Anna Patricia Beck, Christina Vaccarello, Paula Felician, Giulia Dueck, Anne Esfandyari, Dena Meister, Gunter Meitinger, Thomas Schulz, Christian Engelhardt, Stefan |
author_sort | Ramanujam, Deepak |
collection | PubMed |
description | BACKGROUND: Cardiac macrophages (cMPs) are increasingly recognized as important regulators of myocardial homeostasis and disease, yet the role of noncoding RNA in these cells is largely unknown. Small RNA sequencing of the entire miRNomes of the major cardiac cell fractions revealed microRNA-21 (miR-21) as the single highest expressed microRNA in cMPs, both in health and disease (25% and 43% of all microRNA reads, respectively). MiR-21 has been previously reported as a key microRNA driving tissue fibrosis. Here, we aimed to determine the function of macrophage miR-21 on myocardial homeostasis and disease-associated remodeling. METHODS: Macrophage-specific ablation of miR-21 in mice driven by Cx3cr1-Cre was used to determine the function of miR-21 in this cell type. As a disease model, mice were subjected to pressure overload for 6 and 28 days. Cardiac function was assessed in vivo by echocardiography, followed by histological analyses and single-cell sequencing. Cocultures of macrophages and cardiac fibroblasts were used to study macrophage-to-fibroblast signaling. RESULTS: Mice with macrophage-specific genetic deletion of miR-21 were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload of the left ventricle. Single-cell sequencing of pressure-overloaded hearts from these mice revealed that miR-21 in macrophages is essential for their polarization toward a M1-like phenotype. Systematic quantification of intercellular communication mediated by ligand-receptor interactions across all cell types revealed that miR-21 primarily determined macrophage-fibroblast communication, promoting the transition from quiescent fibroblasts to myofibroblasts. Polarization of isolated macrophages in vitro toward a proinflammatory (M1-like) phenotype activated myofibroblast transdifferentiation of cardiac fibroblasts in a paracrine manner and was dependent on miR-21 in cMPs. CONCLUSIONS: Our data indicate a critical role of cMPs in pressure overload–induced cardiac fibrosis and dysfunction and reveal macrophage miR-21 as a key molecule for the profibrotic role of cMPs. |
format | Online Article Text |
id | pubmed-8032214 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-80322142021-04-09 MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload Ramanujam, Deepak Schön, Anna Patricia Beck, Christina Vaccarello, Paula Felician, Giulia Dueck, Anne Esfandyari, Dena Meister, Gunter Meitinger, Thomas Schulz, Christian Engelhardt, Stefan Circulation Original Research Articles BACKGROUND: Cardiac macrophages (cMPs) are increasingly recognized as important regulators of myocardial homeostasis and disease, yet the role of noncoding RNA in these cells is largely unknown. Small RNA sequencing of the entire miRNomes of the major cardiac cell fractions revealed microRNA-21 (miR-21) as the single highest expressed microRNA in cMPs, both in health and disease (25% and 43% of all microRNA reads, respectively). MiR-21 has been previously reported as a key microRNA driving tissue fibrosis. Here, we aimed to determine the function of macrophage miR-21 on myocardial homeostasis and disease-associated remodeling. METHODS: Macrophage-specific ablation of miR-21 in mice driven by Cx3cr1-Cre was used to determine the function of miR-21 in this cell type. As a disease model, mice were subjected to pressure overload for 6 and 28 days. Cardiac function was assessed in vivo by echocardiography, followed by histological analyses and single-cell sequencing. Cocultures of macrophages and cardiac fibroblasts were used to study macrophage-to-fibroblast signaling. RESULTS: Mice with macrophage-specific genetic deletion of miR-21 were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload of the left ventricle. Single-cell sequencing of pressure-overloaded hearts from these mice revealed that miR-21 in macrophages is essential for their polarization toward a M1-like phenotype. Systematic quantification of intercellular communication mediated by ligand-receptor interactions across all cell types revealed that miR-21 primarily determined macrophage-fibroblast communication, promoting the transition from quiescent fibroblasts to myofibroblasts. Polarization of isolated macrophages in vitro toward a proinflammatory (M1-like) phenotype activated myofibroblast transdifferentiation of cardiac fibroblasts in a paracrine manner and was dependent on miR-21 in cMPs. CONCLUSIONS: Our data indicate a critical role of cMPs in pressure overload–induced cardiac fibrosis and dysfunction and reveal macrophage miR-21 as a key molecule for the profibrotic role of cMPs. Lippincott Williams & Wilkins 2021-02-08 2021-04-13 /pmc/articles/PMC8032214/ /pubmed/33550817 http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050682 Text en © 2021 The Authors. https://creativecommons.org/licenses/by-nc-nd/4.0/Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made. |
spellingShingle | Original Research Articles Ramanujam, Deepak Schön, Anna Patricia Beck, Christina Vaccarello, Paula Felician, Giulia Dueck, Anne Esfandyari, Dena Meister, Gunter Meitinger, Thomas Schulz, Christian Engelhardt, Stefan MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload |
title | MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload |
title_full | MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload |
title_fullStr | MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload |
title_full_unstemmed | MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload |
title_short | MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload |
title_sort | microrna-21–dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload |
topic | Original Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032214/ https://www.ncbi.nlm.nih.gov/pubmed/33550817 http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050682 |
work_keys_str_mv | AT ramanujamdeepak microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT schonannapatricia microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT beckchristina microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT vaccarellopaula microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT feliciangiulia microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT dueckanne microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT esfandyaridena microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT meistergunter microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT meitingerthomas microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT schulzchristian microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload AT engelhardtstefan microrna21dependentmacrophagetofibroblastsignalingdeterminesthecardiacresponsetopressureoverload |