Cargando…

Targeting MCL1 to induce mitophagy is a potential therapeutic strategy for Alzheimer disease

Mitochondrial dysfunction is associated with the occurrence of a variety of neurodegenerative diseases, especially Alzheimer disease (AD). As a mitochondrial quality control process, mitophagy is greatly inhibited in AD; increasing evidence shows that the induction of mitophagy is an effective thera...

Descripción completa

Detalles Bibliográficos
Autores principales: Cen, Xufeng, Xu, Xiaoyan, Xia, Hongguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032245/
https://www.ncbi.nlm.nih.gov/pubmed/33342330
http://dx.doi.org/10.1080/15548627.2020.1860542
Descripción
Sumario:Mitochondrial dysfunction is associated with the occurrence of a variety of neurodegenerative diseases, especially Alzheimer disease (AD). As a mitochondrial quality control process, mitophagy is greatly inhibited in AD; increasing evidence shows that the induction of mitophagy is an effective therapeutic intervention strategy. However, the lack of more safe, effective, and clear mechanisms for mitophagy inducers has limited the clinical application. In recent studies, we have identified a small molecule compound, UMI-77, that can safely and effectively induce mitophagy. UMI-77 is an established BH3-mimetic for MCL1 and was developed to induce apoptosis in cancer cells. We found that UMI-77 can bind MCL1 and enhance its function as a mitophagy receptor protein, thus enhancing its interaction with LC3A to induce mitophagy. UMI-77 effectively improves the cognitive decline seen in an AD mouse model. Our findings shed light on the novel mechanisms of mitophagy, reveal that MCL1 is a mitophagy receptor that can be targeted to induce mitophagy, and identify MCL1 as a drug target for therapeutic intervention in AD.