Cargando…
Graphical-model framework for automated annotation of cell identities in dense cellular images
Although identifying cell names in dense image stacks is critical in analyzing functional whole-brain data enabling comparison across experiments, unbiased identification is very difficult, and relies heavily on researchers’ experiences. Here, we present a probabilistic-graphical-model framework, CR...
Autores principales: | Chaudhary, Shivesh, Lee, Sol Ah, Li, Yueyi, Patel, Dhaval S, Lu, Hang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032398/ https://www.ncbi.nlm.nih.gov/pubmed/33625357 http://dx.doi.org/10.7554/eLife.60321 |
Ejemplares similares
-
Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq
por: Kotliar, Dylan, et al.
Publicado: (2019) -
A unified framework for measuring selection on cellular lineages and traits
por: Yamauchi, Shunpei, et al.
Publicado: (2022) -
Genetic control of encoding strategy in a food-sensing neural circuit
por: Diana, Giovanni, et al.
Publicado: (2017) -
Spatiotemporal establishment of dense bacterial colonies growing on hard agar
por: Warren, Mya R, et al.
Publicado: (2019) -
Motion sensing superpixels (MOSES) is a systematic computational framework to quantify and discover cellular motion phenotypes
por: Zhou, Felix Y, et al.
Publicado: (2019)