Cargando…
Theory-Based Failure Modes and Effect Analysis for Medication Errors
Medication Errors (MEs) are still significant challenges, especially in nonautomated health systems. Qualitative studies are mostly used to identify the parameters involved in MEs. Failing to provide accurate information in expert-based decisions can provoke unrealistic results and inappropriate cor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032513/ https://www.ncbi.nlm.nih.gov/pubmed/33868619 http://dx.doi.org/10.1155/2021/5533208 |
_version_ | 1783676222438375424 |
---|---|
author | Jafarzadeh Ghoushchi, Saeid Dorosti, Shadi Ab Rahman, Mohd Nizam Khakifirooz, Marzieh Fathi, Mahdi |
author_facet | Jafarzadeh Ghoushchi, Saeid Dorosti, Shadi Ab Rahman, Mohd Nizam Khakifirooz, Marzieh Fathi, Mahdi |
author_sort | Jafarzadeh Ghoushchi, Saeid |
collection | PubMed |
description | Medication Errors (MEs) are still significant challenges, especially in nonautomated health systems. Qualitative studies are mostly used to identify the parameters involved in MEs. Failing to provide accurate information in expert-based decisions can provoke unrealistic results and inappropriate corrective actions eventually. However, mostly, some levels of uncertainty accompany the decisions in real practice. This study tries to present a hybrid decision-making approach to assigning different weights to risk factors and considering the uncertainty in the ranking process in the Failure Modes and Effect Analysis (FMEA) technique. Initially, significant MEs are identified by three groups of qualified experts (doctors, nurses, and pharmacists). Afterward, for assigning weights to the risk factors, Z-number couples with the Stepwise Weight Assessment Ratio Analysis (SWARA) method, named Z-SWARA, to add reliability concept in the decision-making process. Finally, the identified MEs are ranked through the developed Weighted Aggregated Sum Product Assessment (WASPAS) method, namely, Z-WASPAS. To demonstrate the applicability of the proposed approach, the ranking results compare with typical methods, such as fuzzy-WASPAS and FMEA. The findings of the present study highlight improper medication administration as the main failure mode, which can result in a fatality or patient injury. Moreover, the utilization of multiple-criteria decision-making methods in combination with Z-number can be a useful tool in the healthcare management field since it can address the problems by considering reliability and uncertainty simultaneously. |
format | Online Article Text |
id | pubmed-8032513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-80325132021-04-16 Theory-Based Failure Modes and Effect Analysis for Medication Errors Jafarzadeh Ghoushchi, Saeid Dorosti, Shadi Ab Rahman, Mohd Nizam Khakifirooz, Marzieh Fathi, Mahdi J Healthc Eng Research Article Medication Errors (MEs) are still significant challenges, especially in nonautomated health systems. Qualitative studies are mostly used to identify the parameters involved in MEs. Failing to provide accurate information in expert-based decisions can provoke unrealistic results and inappropriate corrective actions eventually. However, mostly, some levels of uncertainty accompany the decisions in real practice. This study tries to present a hybrid decision-making approach to assigning different weights to risk factors and considering the uncertainty in the ranking process in the Failure Modes and Effect Analysis (FMEA) technique. Initially, significant MEs are identified by three groups of qualified experts (doctors, nurses, and pharmacists). Afterward, for assigning weights to the risk factors, Z-number couples with the Stepwise Weight Assessment Ratio Analysis (SWARA) method, named Z-SWARA, to add reliability concept in the decision-making process. Finally, the identified MEs are ranked through the developed Weighted Aggregated Sum Product Assessment (WASPAS) method, namely, Z-WASPAS. To demonstrate the applicability of the proposed approach, the ranking results compare with typical methods, such as fuzzy-WASPAS and FMEA. The findings of the present study highlight improper medication administration as the main failure mode, which can result in a fatality or patient injury. Moreover, the utilization of multiple-criteria decision-making methods in combination with Z-number can be a useful tool in the healthcare management field since it can address the problems by considering reliability and uncertainty simultaneously. Hindawi 2021-03-31 /pmc/articles/PMC8032513/ /pubmed/33868619 http://dx.doi.org/10.1155/2021/5533208 Text en Copyright © 2021 Saeid Jafarzadeh Ghoushchi et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Jafarzadeh Ghoushchi, Saeid Dorosti, Shadi Ab Rahman, Mohd Nizam Khakifirooz, Marzieh Fathi, Mahdi Theory-Based Failure Modes and Effect Analysis for Medication Errors |
title | Theory-Based Failure Modes and Effect Analysis for Medication Errors |
title_full | Theory-Based Failure Modes and Effect Analysis for Medication Errors |
title_fullStr | Theory-Based Failure Modes and Effect Analysis for Medication Errors |
title_full_unstemmed | Theory-Based Failure Modes and Effect Analysis for Medication Errors |
title_short | Theory-Based Failure Modes and Effect Analysis for Medication Errors |
title_sort | theory-based failure modes and effect analysis for medication errors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032513/ https://www.ncbi.nlm.nih.gov/pubmed/33868619 http://dx.doi.org/10.1155/2021/5533208 |
work_keys_str_mv | AT jafarzadehghoushchisaeid theorybasedfailuremodesandeffectanalysisformedicationerrors AT dorostishadi theorybasedfailuremodesandeffectanalysisformedicationerrors AT abrahmanmohdnizam theorybasedfailuremodesandeffectanalysisformedicationerrors AT khakifiroozmarzieh theorybasedfailuremodesandeffectanalysisformedicationerrors AT fathimahdi theorybasedfailuremodesandeffectanalysisformedicationerrors |