Cargando…

HyperBeta: characterizing the structural dynamics of proteins and self-assembling peptides

Self-assembling processes are ubiquitous phenomena that drive the organization and the hierarchical formation of complex molecular systems. The investigation of assembling dynamics, emerging from the interactions among biomolecules like amino-acids and polypeptides, is fundamental to determine how a...

Descripción completa

Detalles Bibliográficos
Autores principales: Nobile, Marco S., Fontana, Federico, Manzoni, Luca, Cazzaniga, Paolo, Mauri, Giancarlo, Saracino, Gloria A. A., Besozzi, Daniela, Gelain, Fabrizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032683/
https://www.ncbi.nlm.nih.gov/pubmed/33833280
http://dx.doi.org/10.1038/s41598-021-87087-0
Descripción
Sumario:Self-assembling processes are ubiquitous phenomena that drive the organization and the hierarchical formation of complex molecular systems. The investigation of assembling dynamics, emerging from the interactions among biomolecules like amino-acids and polypeptides, is fundamental to determine how a mixture of simple objects can yield a complex structure at the nano-scale level. In this paper we present HyperBeta, a novel open-source software that exploits an innovative algorithm based on hyper-graphs to efficiently identify and graphically represent the dynamics of [Formula: see text] -sheets formation. Differently from the existing tools, HyperBeta directly manipulates data generated by means of coarse-grained molecular dynamics simulation tools (GROMACS), performed using the MARTINI force field. Coarse-grained molecular structures are visualized using HyperBeta ’s proprietary real-time high-quality 3D engine, which provides a plethora of analysis tools and statistical information, controlled by means of an intuitive event-based graphical user interface. The high-quality renderer relies on a variety of visual cues to improve the readability and interpretability of distance and depth relationships between peptides. We show that HyperBeta is able to track the [Formula: see text] -sheets formation in coarse-grained molecular dynamics simulations, and provides a completely new and efficient mean for the investigation of the kinetics of these nano-structures. HyperBeta will therefore facilitate biotechnological and medical research where these structural elements play a crucial role, such as the development of novel high-performance biomaterials in tissue engineering, or a better comprehension of the molecular mechanisms at the basis of complex pathologies like Alzheimer’s disease.