Cargando…

Scattering-lens based quantum imaging beyond shot noise

The scheme of optical imaging using scattering lens can provide a resolution beyond the classical optical diffraction limit with a coherent-state input. Nevertheless, due to the shot noise of the coherent state, the corresponding signal-to-noise ratio and resolution are both still shot-noise-limited...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dong, Yao, Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032713/
https://www.ncbi.nlm.nih.gov/pubmed/33833248
http://dx.doi.org/10.1038/s41598-021-85846-7
Descripción
Sumario:The scheme of optical imaging using scattering lens can provide a resolution beyond the classical optical diffraction limit with a coherent-state input. Nevertheless, due to the shot noise of the coherent state, the corresponding signal-to-noise ratio and resolution are both still shot-noise-limited. In order to circumvent this problem, we theoretically propose an alternative scheme where the squeezed state (with a sub-shot noise) is considered as input and the quantum noise is then suppressed below the shot-noise level. Consequently, when comparing with the previous imaging scheme (using combination of coherent state and scattering lens), our proposal is able to achieve an enhanced signal-to-noise ratio for a given scattering lens. Meanwhile, it is demonstrated that the resolution is also improved. We believe that this method may afford a new way of using squeezed states and enable a higher performance than that of using coherent state and scattering lens.