Cargando…
Lactobacillus delbrueckii alleviates depression-like behavior through inhibiting toll-like receptor 4 (TLR4) signaling in mice
BACKGROUND: The intestinal flora can influence behavior through the microbiota-gut-brain axis and is closely related to the occurrence and development of nervous system diseases such as depression. Probiotics like Lactobacillus may regulate the balance of the intestinal flora and play an active role...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8033381/ https://www.ncbi.nlm.nih.gov/pubmed/33842587 http://dx.doi.org/10.21037/atm-20-4411 |
Sumario: | BACKGROUND: The intestinal flora can influence behavior through the microbiota-gut-brain axis and is closely related to the occurrence and development of nervous system diseases such as depression. Probiotics like Lactobacillus may regulate the balance of the intestinal flora and play an active role in preventing and treating depression. METHODS: Eight-week-old C57BL/6J mice (n=32) were randomly and equally divided into a normal control group, a control + Lac group, a model group, and a model + Lac group. The model and model + Lac groups were intraperitoneally injected with 1.2 mg/kg lipopolysaccharide for 7 days, and the behavior of the mice was assessed 24 hours later. The normal and model groups received intragastric administration of saline daily, while the control + Lac and model + Lac groups were given 10(9) cfu Lac intragastrically daily for 7 days. The inhibitory effect of Lac and its fermentation products on depression-related bacteria were examined in vitro. RESULTS: Lac effectively inhibited the production of depression-like behaviors in mice. The expression levels of zonula occludens-1 (ZO-1) and E-cadherin in the small intestine in the model group were significantly decreased, but Lac abrogated this effect. Overactivation of microglia and decreased expression of dopamine transporter (DAT) in brain tissues, which are closely related to depression, were also abrogated by Lac treatment. Furthermore, the expression of toll-like receptor 4 (TLR4) and nod-like receptor protein-3 (NLRP3), as well as the level of interleukin-1 beta (IL-1β) in the intestine and brain, were all significantly increased; however, these effects were subsequently abrogated by Lac. Moreover, Lac inhibited dysbiosis through its metabolites. CONCLUSIONS: Lac has a remarkable antidepressant function, which it performs through the inhibition of dysbiosis (via its metabolites) and pattern recognition receptor TLR4 signaling. |
---|