Cargando…
Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils
[Image: see text] Thermally conductive nanopapers fabricated from graphene and related materials are currently showing great potential in thermal management applications. However, thermal contacts between conductive plates represent the bottleneck for thermal conductivity of nanopapers prepared in t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8033565/ https://www.ncbi.nlm.nih.gov/pubmed/33764755 http://dx.doi.org/10.1021/acsami.1c00319 |
_version_ | 1783676431067250688 |
---|---|
author | Ferraro, Giuseppe Bernal, M. Mar Carniato, Fabio Novara, Chiara Tortello, Mauro Ronchetti, Silvia Giorgis, Fabrizio Fina, Alberto |
author_facet | Ferraro, Giuseppe Bernal, M. Mar Carniato, Fabio Novara, Chiara Tortello, Mauro Ronchetti, Silvia Giorgis, Fabrizio Fina, Alberto |
author_sort | Ferraro, Giuseppe |
collection | PubMed |
description | [Image: see text] Thermally conductive nanopapers fabricated from graphene and related materials are currently showing great potential in thermal management applications. However, thermal contacts between conductive plates represent the bottleneck for thermal conductivity of nanopapers prepared in the absence of a high temperature step for graphitization. In this work, the problem of ineffective thermal contacts is addressed by the use of bifunctional polyaromatic molecules designed to drive self-assembly of graphite nanoplates (GnP) and establish thermal bridges between them. To preserve the high conductivity associated to a defect-free sp(2) structure, non-covalent functionalization with bispyrene compounds, synthesized on purpose with variable tethering chain length, was exploited. Pyrene terminal groups granted for a strong π–π interaction with graphene surface, as demonstrated by UV–Vis, fluorescence, and Raman spectroscopies. Bispyrene molecular junctions between GnP were found to control GnP organization and orientation within the nanopaper, delivering significant enhancement in both in-plane and cross-plane thermal diffusivities. Finally, nanopapers were validated as heat spreader devices for electronic components, evidencing comparable or better thermal dissipation performance than conventional Cu foil, while delivering over 90% weight reduction. |
format | Online Article Text |
id | pubmed-8033565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-80335652021-04-09 Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils Ferraro, Giuseppe Bernal, M. Mar Carniato, Fabio Novara, Chiara Tortello, Mauro Ronchetti, Silvia Giorgis, Fabrizio Fina, Alberto ACS Appl Mater Interfaces [Image: see text] Thermally conductive nanopapers fabricated from graphene and related materials are currently showing great potential in thermal management applications. However, thermal contacts between conductive plates represent the bottleneck for thermal conductivity of nanopapers prepared in the absence of a high temperature step for graphitization. In this work, the problem of ineffective thermal contacts is addressed by the use of bifunctional polyaromatic molecules designed to drive self-assembly of graphite nanoplates (GnP) and establish thermal bridges between them. To preserve the high conductivity associated to a defect-free sp(2) structure, non-covalent functionalization with bispyrene compounds, synthesized on purpose with variable tethering chain length, was exploited. Pyrene terminal groups granted for a strong π–π interaction with graphene surface, as demonstrated by UV–Vis, fluorescence, and Raman spectroscopies. Bispyrene molecular junctions between GnP were found to control GnP organization and orientation within the nanopaper, delivering significant enhancement in both in-plane and cross-plane thermal diffusivities. Finally, nanopapers were validated as heat spreader devices for electronic components, evidencing comparable or better thermal dissipation performance than conventional Cu foil, while delivering over 90% weight reduction. American Chemical Society 2021-03-25 2021-04-07 /pmc/articles/PMC8033565/ /pubmed/33764755 http://dx.doi.org/10.1021/acsami.1c00319 Text en © 2021 The Authors. Published by American Chemical Society Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Ferraro, Giuseppe Bernal, M. Mar Carniato, Fabio Novara, Chiara Tortello, Mauro Ronchetti, Silvia Giorgis, Fabrizio Fina, Alberto Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils |
title | Bispyrene
Functionalization Drives Self-Assembly of
Graphite Nanoplates into Highly Efficient Heat Spreader Foils |
title_full | Bispyrene
Functionalization Drives Self-Assembly of
Graphite Nanoplates into Highly Efficient Heat Spreader Foils |
title_fullStr | Bispyrene
Functionalization Drives Self-Assembly of
Graphite Nanoplates into Highly Efficient Heat Spreader Foils |
title_full_unstemmed | Bispyrene
Functionalization Drives Self-Assembly of
Graphite Nanoplates into Highly Efficient Heat Spreader Foils |
title_short | Bispyrene
Functionalization Drives Self-Assembly of
Graphite Nanoplates into Highly Efficient Heat Spreader Foils |
title_sort | bispyrene
functionalization drives self-assembly of
graphite nanoplates into highly efficient heat spreader foils |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8033565/ https://www.ncbi.nlm.nih.gov/pubmed/33764755 http://dx.doi.org/10.1021/acsami.1c00319 |
work_keys_str_mv | AT ferrarogiuseppe bispyrenefunctionalizationdrivesselfassemblyofgraphitenanoplatesintohighlyefficientheatspreaderfoils AT bernalmmar bispyrenefunctionalizationdrivesselfassemblyofgraphitenanoplatesintohighlyefficientheatspreaderfoils AT carniatofabio bispyrenefunctionalizationdrivesselfassemblyofgraphitenanoplatesintohighlyefficientheatspreaderfoils AT novarachiara bispyrenefunctionalizationdrivesselfassemblyofgraphitenanoplatesintohighlyefficientheatspreaderfoils AT tortellomauro bispyrenefunctionalizationdrivesselfassemblyofgraphitenanoplatesintohighlyefficientheatspreaderfoils AT ronchettisilvia bispyrenefunctionalizationdrivesselfassemblyofgraphitenanoplatesintohighlyefficientheatspreaderfoils AT giorgisfabrizio bispyrenefunctionalizationdrivesselfassemblyofgraphitenanoplatesintohighlyefficientheatspreaderfoils AT finaalberto bispyrenefunctionalizationdrivesselfassemblyofgraphitenanoplatesintohighlyefficientheatspreaderfoils |