Cargando…
Unsupervised phenotyping of sepsis using nonnegative matrix factorization of temporal trends from a multivariate panel of physiological measurements
BACKGROUND: Sepsis is a highly lethal and heterogeneous disease. Utilization of an unsupervised method may identify novel clinical phenotypes that lead to targeted therapies and improved care. METHODS: Our objective was to derive clinically relevant sepsis phenotypes from a multivariate panel of phy...
Autores principales: | Ding, Menghan, Luo, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8033653/ https://www.ncbi.nlm.nih.gov/pubmed/33836745 http://dx.doi.org/10.1186/s12911-021-01460-7 |
Ejemplares similares
-
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Nonnegative Matrix Factorization with Gaussian Process Priors
por: Schmidt, Mikkel N., et al.
Publicado: (2008) -
Bayesian Inference for Nonnegative Matrix Factorisation Models
por: Cemgil, Ali Taylan
Publicado: (2009) -
Reverse annealing for nonnegative/binary matrix factorization
por: Golden, John, et al.
Publicado: (2021) -
Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis
por: Hu, Guoqiang, et al.
Publicado: (2020)