Cargando…

Inhibition of microbial production of the malodorous substance isovaleric acid by 4,4ʹ dichloro 2‐hydroxydiphenyl ether (DCPP)

Human body malodour is a complex phenomenon. Several types of sweat glands produce odorless secretions that are metabolized by a consortium of skin‐resident microorganisms to a diverse set of malodorous substances. Isovaleric acid, a sweaty‐smelling compound, is one major malodorous component produc...

Descripción completa

Detalles Bibliográficos
Autores principales: Mayer, Sonja, Hazenkamp, Menno, Kluttig, Martin, Ochs, Dietmar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8033842/
https://www.ncbi.nlm.nih.gov/pubmed/33970541
http://dx.doi.org/10.1002/mbo3.1174
Descripción
Sumario:Human body malodour is a complex phenomenon. Several types of sweat glands produce odorless secretions that are metabolized by a consortium of skin‐resident microorganisms to a diverse set of malodorous substances. Isovaleric acid, a sweaty‐smelling compound, is one major malodorous component produced by staphylococci with the skin‐derived amino acid L‐leucine as a substrate. During wearing, fabrics are contaminated with sweat and microorganisms and high humidity propagates growth and microbial malodour production. Incomplete removal of sweat residues and microorganisms from fabrics during laundry with bleach‐free detergents and at low temperatures elevate the problem of textile malodour. This study aimed to analyze the inhibitory effect of the antimicrobial 4,4ʹ dichloro 2‐hydroxydiphenyl ether (DCPP) on the formation of isovaleric acid on fabrics. Therefore, GC‐FID‐ and GC–MS‐based methods for the analysis of isovaleric acid in an artificial human sweat‐mimicking medium and in textile extracts were established. Here, we show that antimicrobials capable to deposit on fabrics during laundry, such as DCPP, are effective in growth inhibition of typical malodour‐generating bacteria and prevent the staphylococcal formation of isovaleric acid on fabrics in a simple experimental setup. This can contribute to increased hygiene for mild laundry care approaches, where bacterial contamination and malodour production represent a considerable consumer problem.