Cargando…
Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway
Sepsis is a common and lethal syndrome. Long non-coding RNA (lncRNA) transcript predicting survival in AKI (TapSAKI) has recently been found to serve as an important regulator in sepsis. However, the underlying mechanism of TapSAKI in sepsis pathogenesis remains largely unknown. Our data demonstrate...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034242/ https://www.ncbi.nlm.nih.gov/pubmed/33869780 http://dx.doi.org/10.1515/med-2021-0204 |
_version_ | 1783676506798555136 |
---|---|
author | Han, Xiaoning Yuan, Zhiyong Jing, Yajun Zhou, Weigui Sun, Yunbo Xing, Jinyan |
author_facet | Han, Xiaoning Yuan, Zhiyong Jing, Yajun Zhou, Weigui Sun, Yunbo Xing, Jinyan |
author_sort | Han, Xiaoning |
collection | PubMed |
description | Sepsis is a common and lethal syndrome. Long non-coding RNA (lncRNA) transcript predicting survival in AKI (TapSAKI) has recently been found to serve as an important regulator in sepsis. However, the underlying mechanism of TapSAKI in sepsis pathogenesis remains largely unknown. Our data demonstrated that lipopolysaccharide (LPS)-induced HK-2 cell injury by weakening cell viability and enhancing cell apoptosis and inflammation. TapSAKI was upregulated and miR-205 was downregulated in LPS-induced HK-2 cells. TapSAKI knockdown or miR-205 overexpression alleviated LPS-induced cytotoxicity in HK-2 cells. TapSAKI sequestered miR-205 via acting as a miR-205 sponge. Moreover, the mitigating effect of TapSAKI silencing on LPS-induced HK-2 cell injury was mediated by miR-205. Additionally, the interferon regulatory factor 3 (IRF3) signaling was involved in the regulation of the TapSAKI/miR-205 axis on LPS-induced HK-2 cell damage. Our current study suggested that TapSAKI silencing relieved LPS-induced injury in HK-2 cells at least in part by sponging miR-205 and regulating the IRF3 signaling pathway, highlighting a novel understanding for sepsis pathogenesis and a promising target for this disease treatment. |
format | Online Article Text |
id | pubmed-8034242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | De Gruyter |
record_format | MEDLINE/PubMed |
spelling | pubmed-80342422021-04-16 Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway Han, Xiaoning Yuan, Zhiyong Jing, Yajun Zhou, Weigui Sun, Yunbo Xing, Jinyan Open Med (Wars) Research Article Sepsis is a common and lethal syndrome. Long non-coding RNA (lncRNA) transcript predicting survival in AKI (TapSAKI) has recently been found to serve as an important regulator in sepsis. However, the underlying mechanism of TapSAKI in sepsis pathogenesis remains largely unknown. Our data demonstrated that lipopolysaccharide (LPS)-induced HK-2 cell injury by weakening cell viability and enhancing cell apoptosis and inflammation. TapSAKI was upregulated and miR-205 was downregulated in LPS-induced HK-2 cells. TapSAKI knockdown or miR-205 overexpression alleviated LPS-induced cytotoxicity in HK-2 cells. TapSAKI sequestered miR-205 via acting as a miR-205 sponge. Moreover, the mitigating effect of TapSAKI silencing on LPS-induced HK-2 cell injury was mediated by miR-205. Additionally, the interferon regulatory factor 3 (IRF3) signaling was involved in the regulation of the TapSAKI/miR-205 axis on LPS-induced HK-2 cell damage. Our current study suggested that TapSAKI silencing relieved LPS-induced injury in HK-2 cells at least in part by sponging miR-205 and regulating the IRF3 signaling pathway, highlighting a novel understanding for sepsis pathogenesis and a promising target for this disease treatment. De Gruyter 2021-04-07 /pmc/articles/PMC8034242/ /pubmed/33869780 http://dx.doi.org/10.1515/med-2021-0204 Text en © 2021 Xiaoning Han et al., published by De Gruyter https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. |
spellingShingle | Research Article Han, Xiaoning Yuan, Zhiyong Jing, Yajun Zhou, Weigui Sun, Yunbo Xing, Jinyan Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway |
title | Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway |
title_full | Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway |
title_fullStr | Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway |
title_full_unstemmed | Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway |
title_short | Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway |
title_sort | knockdown of lncrna tapsaki alleviates lps-induced injury in hk-2 cells through the mir-205/irf3 pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034242/ https://www.ncbi.nlm.nih.gov/pubmed/33869780 http://dx.doi.org/10.1515/med-2021-0204 |
work_keys_str_mv | AT hanxiaoning knockdownoflncrnatapsakialleviateslpsinducedinjuryinhk2cellsthroughthemir205irf3pathway AT yuanzhiyong knockdownoflncrnatapsakialleviateslpsinducedinjuryinhk2cellsthroughthemir205irf3pathway AT jingyajun knockdownoflncrnatapsakialleviateslpsinducedinjuryinhk2cellsthroughthemir205irf3pathway AT zhouweigui knockdownoflncrnatapsakialleviateslpsinducedinjuryinhk2cellsthroughthemir205irf3pathway AT sunyunbo knockdownoflncrnatapsakialleviateslpsinducedinjuryinhk2cellsthroughthemir205irf3pathway AT xingjinyan knockdownoflncrnatapsakialleviateslpsinducedinjuryinhk2cellsthroughthemir205irf3pathway |