Cargando…
EM-stellar: benchmarking deep learning for electron microscopy image segmentation
MOTIVATION: The inherent low contrast of electron microscopy (EM) datasets presents a significant challenge for rapid segmentation of cellular ultrastructures from EM data. This challenge is particularly prominent when working with high-resolution big-datasets that are now acquired using electron to...
Autores principales: | Khadangi, Afshin, Boudier, Thomas, Rajagopal, Vijay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034537/ https://www.ncbi.nlm.nih.gov/pubmed/33416852 http://dx.doi.org/10.1093/bioinformatics/btaa1094 |
Ejemplares similares
-
CardioVinci: building blocks for virtual cardiac cells using deep learning
por: Khadangi, Afshin, et al.
Publicado: (2022) -
Automated segmentation of cardiomyocyte Z-disks from high-throughput scanning electron microscopy data
por: Khadangi, Afshin, et al.
Publicado: (2019) -
Benchmark for multi-cellular segmentation of bright field microscopy images
por: Zaritsky, Assaf, et al.
Publicado: (2013) -
Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images
por: Gómez-de-Mariscal, Estibaliz, et al.
Publicado: (2019) -
Benchmarking Deep Learning Models for Tooth Structure
Segmentation
por: Schneider, L., et al.
Publicado: (2022)