Cargando…
CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming
Deep fully connected networks are often considered “universal approximators” that are capable of learning any function. Inthisarticle, we utilize this particular property of deep neural networks (DNNs) to estimate normalized cross correlation as a function of spatial lag (i.e., spatial coherence fun...
Autores principales: | Wiacek, Alycen, González, Eduardo, Bell, Muyinatu A. Lediju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034551/ https://www.ncbi.nlm.nih.gov/pubmed/32203018 http://dx.doi.org/10.1109/TUFFC.2020.2982848 |
Ejemplares similares
-
COHERENCE METRICS FOR READER-INDEPENDENT DIFFERENTIATION OF CYSTIC FROM SOLID BREAST MASSES IN ULTRASOUND IMAGES
por: WIACEK, ALYCEN, et al.
Publicado: (2023) -
Mitigating skin tone bias in linear array in vivo photoacoustic imaging with short-lag spatial coherence beamforming
por: Fernandes, Guilherme S.P., et al.
Publicado: (2023) -
GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions
por: Gonzalez, Eduardo A., et al.
Publicado: (2020) -
A Review of Deep Learning Applications in Lung Ultrasound Imaging of COVID-19 Patients
por: Zhao, Lingyi, et al.
Publicado: (2022) -
Deep Learning for Ultrasound Image Formation: CUBDL Evaluation Framework and Open Datasets
por: Hyun, Dongwoon, et al.
Publicado: (2021)