Cargando…
Orchestrating privacy-protected big data analyses of data from different resources with R and DataSHIELD
Combined analysis of multiple, large datasets is a common objective in the health- and biosciences. Existing methods tend to require researchers to physically bring data together in one place or follow an analysis plan and share results. Developed over the last 10 years, the DataSHIELD platform is a...
Autores principales: | Marcon, Yannick, Bishop, Tom, Avraam, Demetris, Escriba-Montagut, Xavier, Ryser-Welch, Patricia, Wheater, Stuart, Burton, Paul, González, Juan R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034722/ https://www.ncbi.nlm.nih.gov/pubmed/33784300 http://dx.doi.org/10.1371/journal.pcbi.1008880 |
Ejemplares similares
-
Privacy protected text analysis in DataSHIELD
por: Wilson, Rebecca, et al.
Publicado: (2017) -
Privacy protected graphical functionality in DataSHIELD
por: Avraam, Demetris, et al.
Publicado: (2017) -
dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD
por: Banerjee, Soumya, et al.
Publicado: (2022) -
Software Application Profile: ShinyDataSHIELD—an R Shiny application to perform federated non-disclosive data analysis in multicohort studies
por: Escribà-Montagut, Xavier, et al.
Publicado: (2022) -
DataSHIELD: taking the analysis to the data, not the data to the analysis
por: Gaye, Amadou, et al.
Publicado: (2014)