Cargando…
Stellar feedback and triggered star formation in the prototypical bubble RCW 120
Radiative and mechanical feedback of massive stars regulates star formation and galaxy evolution. Positive feedback triggers the creation of new stars by collecting dense shells of gas, while negative feedback disrupts star formation by shredding molecular clouds. Although key to understanding star...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034851/ https://www.ncbi.nlm.nih.gov/pubmed/33837081 http://dx.doi.org/10.1126/sciadv.abe9511 |
Sumario: | Radiative and mechanical feedback of massive stars regulates star formation and galaxy evolution. Positive feedback triggers the creation of new stars by collecting dense shells of gas, while negative feedback disrupts star formation by shredding molecular clouds. Although key to understanding star formation, their relative importance is unknown. Here, we report velocity-resolved observations from the SOFIA (Stratospheric Observatory for Infrared Astronomy) legacy program FEEDBACK of the massive star-forming region RCW 120 in the [CII] 1.9-THz fine-structure line, revealing a gas shell expanding at 15 km/s. Complementary APEX (Atacama Pathfinder Experiment) CO J = 3-2 345-GHz observations exhibit a ring structure of molecular gas, fragmented into clumps that are actively forming stars. Our observations demonstrate that triggered star formation can occur on much shorter time scales than hitherto thought (<0.15 million years), suggesting that positive feedback operates on short time periods. |
---|