Cargando…
Deep learning model to predict complex stress and strain fields in hierarchical composites
Materials-by-design is a paradigm to develop previously unknown high-performance materials. However, finding materials with superior properties is often computationally or experimentally intractable because of the astronomical number of combinations in design space. Here we report an AI-based approa...
Autores principales: | Yang, Zhenze, Yu, Chi-Hua, Buehler, Markus J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034856/ https://www.ncbi.nlm.nih.gov/pubmed/33837076 http://dx.doi.org/10.1126/sciadv.abd7416 |
Ejemplares similares
-
Detection of sitting posture using hierarchical image composition and deep learning
por: Kulikajevas, Audrius, et al.
Publicado: (2021) -
Prediction of atomic stress fields using cycle-consistent adversarial neural networks based on unpaired and unmatched sparse datasets
por: Buehler, Markus J.
Publicado: (2022) -
Learning the stress-strain fields in digital composites using Fourier neural operator
por: Rashid, Meer Mehran, et al.
Publicado: (2022) -
An improved deep learning model for hierarchical classification of protein families
por: Sandaruwan, Pahalage Dhanushka, et al.
Publicado: (2021) -
Hierarchical deep learning for predicting GO annotations by integrating protein knowledge
por: Merino, Gabriela A, et al.
Publicado: (2022)