Cargando…
Accurate prediction of acute pancreatitis severity with integrative blood molecular measurements
Background: Early diagnosis of severe acute pancreatitis (SAP) is essential to minimize its mortality and improve prognosis. We aimed to develop an accurate and applicable machine learning predictive model based on routine clinical testing results for stratifying acute pancreatitis (AP) severity. Re...
Autores principales: | Sun, Hong-Wei, Lu, Jing-Yi, Weng, Yi-Xin, Chen, Hao, He, Qi-Ye, Liu, Rui, Li, Hui-Ping, Pan, Jing-Ye, Shi, Ke-Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034948/ https://www.ncbi.nlm.nih.gov/pubmed/33714951 http://dx.doi.org/10.18632/aging.202689 |
Ejemplares similares
-
Accurate prediction of acute pancreatitis severity based on genome-wide cell free DNA methylation profiles
por: Sun, Hong-Wei, et al.
Publicado: (2021) -
Use of an artificial neural network to predict persistent organ failure in patients with acute pancreatitis
por: Hong, Wan-dong, et al.
Publicado: (2013) -
Risk Factors for Fetal Death and Maternal AP Severity in Acute Pancreatitis in Pregnancy
por: Shi, Xiaolei, et al.
Publicado: (2021) -
Identification of circulating extracellular vesicle long RNAs as diagnostic biomarkers for patients with severe acute pancreatitis
por: Zhu, Qingfu, et al.
Publicado: (2022) -
Drainage fluid and serum amylase levels accurately predict development of postoperative pancreatic fistula
por: Jin, Shuo, et al.
Publicado: (2017)