Cargando…
Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection
Penalized factor analysis is an efficient technique that produces a factor loading matrix with many zero elements thanks to the introduction of sparsity-inducing penalties within the estimation process. However, sparse solutions and stable model selection procedures are only possible if the employed...
Autores principales: | Geminiani, Elena, Marra, Giampiero, Moustaki, Irini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035122/ https://www.ncbi.nlm.nih.gov/pubmed/33768403 http://dx.doi.org/10.1007/s11336-021-09751-8 |
Ejemplares similares
-
A Note on Likelihood Ratio Tests for Models with Latent Variables
por: Chen, Yunxiao, et al.
Publicado: (2020) -
Rotation to Sparse Loadings Using [Formula: see text] Losses and Related Inference Problems
por: Liu, Xinyi, et al.
Publicado: (2023) -
Sparse and Simple Structure Estimation via Prenet Penalization
por: Hirose, Kei, et al.
Publicado: (2022) -
A multivariate approach to investigate the combined biological effects of multiple exposures
por: Jain, Pooja, et al.
Publicado: (2018) -
Statistical methods for the time-to-event analysis of individual participant data from multiple epidemiological studies
por: Thompson, Simon, et al.
Publicado: (2010)