Cargando…
Quantitative salivary gland SPECT/CT using deep convolutional neural networks
Quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) using Tc-99m pertechnetate aids in evaluating salivary gland function. However, gland segmentation and quantitation of gland uptake is challenging. We develop a salivary gland SPECT/CT with automated segmentation...
Autores principales: | Park, Junyoung, Lee, Jae Sung, Oh, Dongkyu, Ryoo, Hyun Gee, Han, Jeong Hee, Lee, Won Woo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035179/ https://www.ncbi.nlm.nih.gov/pubmed/33837284 http://dx.doi.org/10.1038/s41598-021-87497-0 |
Ejemplares similares
-
CT-free quantitative SPECT for automatic evaluation of %thyroid uptake based on deep-learning
por: Kwon, Kyounghyoun, et al.
Publicado: (2023) -
Measurement of Glomerular Filtration Rate using Quantitative SPECT/CT and Deep-learning-based Kidney Segmentation
por: Park, Junyoung, et al.
Publicado: (2019) -
SPECT/CT-based dosimetry of salivary glands and iodine-avid lesions following (131)I therapy
por: Abuqbeitah, Mohammad, et al.
Publicado: (2023) -
Quantitative SPECT/CT for differentiating between enchondroma and grade I chondrosarcoma
por: Choi, Woo Hee, et al.
Publicado: (2020) -
Convolutional neural network-based automatic heart segmentation and quantitation in (123)I-metaiodobenzylguanidine SPECT imaging
por: Saito, Shintaro, et al.
Publicado: (2021)