Cargando…

Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge

Vorticity is a key ingredient to a broad variety of fluid phenomena, and its quantised version is considered to be the hallmark of superfluidity. Circulating flows that correspond to vortices of a large topological charge, termed giant vortices, are notoriously difficult to realise and even when ext...

Descripción completa

Detalles Bibliográficos
Autores principales: Cookson, Tamsin, Kalinin, Kirill, Sigurdsson, Helgi, Töpfer, Julian D., Alyatkin, Sergey, Silva, Matteo, Langbein, Wolfgang, Berloff, Natalia G., Lagoudakis, Pavlos G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035188/
https://www.ncbi.nlm.nih.gov/pubmed/33837211
http://dx.doi.org/10.1038/s41467-021-22121-3
Descripción
Sumario:Vorticity is a key ingredient to a broad variety of fluid phenomena, and its quantised version is considered to be the hallmark of superfluidity. Circulating flows that correspond to vortices of a large topological charge, termed giant vortices, are notoriously difficult to realise and even when externally imprinted, they are unstable, breaking into many vortices of a single charge. In spite of many theoretical proposals on the formation and stabilisation of giant vortices in ultra-cold atomic Bose-Einstein condensates and other superfluid systems, their experimental realisation remains elusive. Polariton condensates stand out from other superfluid systems due to their particularly strong interparticle interactions combined with their non-equilibrium nature, and as such provide an alternative testbed for the study of vortices. Here, we non-resonantly excite an odd number of polariton condensates at the vertices of a regular polygon and we observe the formation of a stable discrete vortex state with a large topological charge as a consequence of antibonding frustration between nearest neighbouring condensates.