Cargando…
A high-resolution protein architecture of the budding yeast genome
The genome-wide protein architecture of chromatin that maintains chromosome integrity and gene regulation is ill-defined. Here we use ChIP-exo/seq(1,2) to define this structure in Saccharomyces. We identified 21 ensembles consisting of ~400 different proteins related to DNA replication, centromeres,...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035251/ https://www.ncbi.nlm.nih.gov/pubmed/33692541 http://dx.doi.org/10.1038/s41586-021-03314-8 |
Sumario: | The genome-wide protein architecture of chromatin that maintains chromosome integrity and gene regulation is ill-defined. Here we use ChIP-exo/seq(1,2) to define this structure in Saccharomyces. We identified 21 ensembles consisting of ~400 different proteins related to DNA replication, centromeres, subtelomeres, transposons, and RNA polymerase (Pol) I, II, and III transcription. Replication proteins engulfed a nucleosome, centromeres lacked a nucleosome, and repressive proteins encompassed three nucleosomes at subtelomeric X-elements. We find that most Pol II promoters evolved to lack a regulatory region, having only a core promoter. These constitutive promoters comprised a short nucleosome-free region (NFR) adjacent to a +1 nucleosome, which together bound TFIID to form a preinitiation complex (PIC). Positioned insulators protected core promoters from upstream events. A small fraction of promoters were architected for inducibility, wherein sequence-specific transcription factors (TFs) create a nucleosome-depleted region (NDR) that is distinct from NFRs. We describe TF structural interactions with the genome and cognate cofactors, including nucleosomal and transcriptional regulators RPD3-L, SAGA, NuA4, Tup1, Mediator, and SWI-SNF. Surprisingly, we do not detect TF-TFIID interactions, suggesting that they do not stably occur. Our model for gene induction involves TFs, cofactors, and general factors like TBP and TFIIB, but not TFIID. However, constitutive transcription involves TFIID but not TFs and cofactors. From this we define a highly integrated network of TF-regulated transcription. |
---|