Cargando…
Image synthesis of monoenergetic CT image in dual‐energy CT using kilovoltage CT with deep convolutional generative adversarial networks
PURPOSE: To synthesize a dual‐energy computed tomography (DECT) image from an equivalent kilovoltage computed tomography (kV‐CT) image using a deep convolutional adversarial network. METHODS: A total of 18,084 images of 28 patients are categorized into training and test datasets. Monoenergetic CT im...
Autores principales: | Kawahara, Daisuke, Ozawa, Shuichi, Kimura, Tomoki, Nagata, Yasushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035569/ https://www.ncbi.nlm.nih.gov/pubmed/33599386 http://dx.doi.org/10.1002/acm2.13190 |
Ejemplares similares
-
Influence of beam hardening in dual-energy CT imaging: phantom study for iodine mapping, virtual monoenergetic imaging, and virtual non-contrast imaging
por: Kanatani, Risa, et al.
Publicado: (2021) -
Image synthesis of effective atomic number images using a deep convolutional neural network-based generative adversarial network
por: Kawahara, Daisuke, et al.
Publicado: (2022) -
Tolerance levels of CT number to electron density table for photon beam in radiotherapy treatment planning system
por: Nakao, Minoru, et al.
Publicado: (2017) -
Virtual Monoenergetic CT Imaging via Deep Learning
por: Cong, Wenxiang, et al.
Publicado: (2020) -
Image quality and absorbed dose comparison of single‐ and dual‐source cone‐beam computed tomography
por: Miura, Hideharu, et al.
Publicado: (2018)