Cargando…
Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts
Single-cell RNA sequencing (scRNA-seq) provides a powerful tool to determine expression patterns of thousands of individual cells. However, the analysis of scRNA-seq data remains a computational challenge due to the high technical noise such as the presence of dropout events that lead to a large pro...
Autores principales: | Zhang, Lihua, Zhang, Shihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035992/ https://www.ncbi.nlm.nih.gov/pubmed/33002136 http://dx.doi.org/10.1093/jmcb/mjaa052 |
Ejemplares similares
-
DrImpute: imputing dropout events in single cell RNA sequencing data
por: Gong, Wuming, et al.
Publicado: (2018) -
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data
por: Malec, Marcin, et al.
Publicado: (2022) -
Missing Value Imputation With Low-Rank Matrix Completion in Single-Cell RNA-Seq Data by Considering Cell Heterogeneity
por: Huang, Meng, et al.
Publicado: (2022) -
RESCUE: imputing dropout events in single-cell RNA-sequencing data
por: Tracy, Sam, et al.
Publicado: (2019) -
Regulatory network-based imputation of dropouts in single-cell RNA sequencing data
por: Leote, Ana Carolina, et al.
Publicado: (2022)