Cargando…
Adaptive penalization in high-dimensional regression and classification with external covariates using variational Bayes
Penalization schemes like Lasso or ridge regression are routinely used to regress a response of interest on a high-dimensional set of potential predictors. Despite being decisive, the question of the relative strength of penalization is often glossed over and only implicitly determined by the scale...
Autores principales: | Velten, Britta, Huber, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036004/ https://www.ncbi.nlm.nih.gov/pubmed/31596468 http://dx.doi.org/10.1093/biostatistics/kxz034 |
Ejemplares similares
-
Penalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces
por: Gentry, Amanda Elswick, et al.
Publicado: (2015) -
Obtaining insights from high-dimensional data: sparse principal covariates regression
por: Van Deun, Katrijn, et al.
Publicado: (2018) -
Penalized logistic regression with low prevalence exposures beyond high dimensional settings
por: Doerken, Sam, et al.
Publicado: (2019) -
Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models
por: Belhechmi, Shaima, et al.
Publicado: (2020) -
High-dimensional covariance estimation: with high-dimensional data
por: Pourahmadi, Mohsen
Publicado: (2013)