Cargando…
Induction of Adipogenic Genes by Novel Serum-Free Conditions From Pre-adipocyte 3T3-L1 and ST2 Cells
Introduction Obesity, defined as a condition of excessive fat accumulation in adipose tissue, is a global epidemic implicated in a myriad of processes deleterious to human health. It has become one of the leading impediments to public health globally. The study of obesity necessitates adipocyte mode...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036016/ https://www.ncbi.nlm.nih.gov/pubmed/33854851 http://dx.doi.org/10.7759/cureus.13831 |
Sumario: | Introduction Obesity, defined as a condition of excessive fat accumulation in adipose tissue, is a global epidemic implicated in a myriad of processes deleterious to human health. It has become one of the leading impediments to public health globally. The study of obesity necessitates adipocyte models, which commonly employ a medium enriched with adipogenic hormones and fetal bovine serum (FBS) to culture terminal adipocytes. In the current study, we developed a novel protocol for serum-free differentiation of 3T3-L1 and ST2 pre-adipocytes using media enriched with free fatty acids (FFA) and bovine serum albumin (BSA). Differentiation was characterized by measuring FFA uptake and changes in expression of adipogenic genes. The novel protocol was also compared against the existing serum-inclusive method. Methods The National Institutes of Health (NIH)-3T3-L1 and ST2 pre-adipocyte cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) containing 10% calf serum and 1% penicillin-streptomycin and Roswell Park Memorial Institute Medium (RPMI) with 10% FBS and 1% penicillin-streptomycin mixture, respectively, at 37℃, 5% CO(2) in a humidified atmosphere. Differentiation was induced using a mixture of 0.25 µM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 10 µg/mL insulin, or 1% insulin-transferrin-selenium (ITS). Cells were cultured in serum-free media containing DMEM with BSA (2.5%) and lipid mixture 1 (LM1 1%) as well as serum-inclusive media enriched with 10% FBS. Total RNA was extracted, and quantitative reverse transcription-polymerase chain reaction (RT-PCR) was performed using delta-delta Ct method, also known as the 2(-∆∆Ct) method. Ribosomal protein, large, P0 (RPLP0) was used as a house-keeping gene for quantitation of relative expressions. Results We observed an increase in fatty acid accumulation relative to controls using Oil Red O neutral lipid staining and spectrophotometry. This result was consistent with the effects of the serum-inclusive method. Differentiation was further confirmed by increased gene expression of adipogenic transcription factors - peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα); adipogenic genes - fatty acid-binding protein 4 (FABP4/aP2) and fatty acid translocase (FAT/CD36); and the lipogenic gene - perilipin by using quantitative RT-PCR. Conclusion Our data suggest that serum-free differentiation can significantly enhance the free fatty acid accumulation as well as adipogenic gene expression in both NIH-3T3-L1 and ST2 pre-adipocyte cells. Given the shortcomings of FBS, this method may provide advantages to the serum-inclusive protocols described previously. |
---|