Cargando…

A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data

Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortic...

Descripción completa

Detalles Bibliográficos
Autores principales: Trutti, Anne C., Fontanesi, Laura, Mulder, Martijn J., Bazin, Pierre-Louis, Hommel, Bernhard, Forstmann, Birte U.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036186/
https://www.ncbi.nlm.nih.gov/pubmed/33580320
http://dx.doi.org/10.1007/s00429-021-02231-w
_version_ 1783676854674128896
author Trutti, Anne C.
Fontanesi, Laura
Mulder, Martijn J.
Bazin, Pierre-Louis
Hommel, Bernhard
Forstmann, Birte U.
author_facet Trutti, Anne C.
Fontanesi, Laura
Mulder, Martijn J.
Bazin, Pierre-Louis
Hommel, Bernhard
Forstmann, Birte U.
author_sort Trutti, Anne C.
collection PubMed
description Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.
format Online
Article
Text
id pubmed-8036186
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-80361862021-04-27 A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data Trutti, Anne C. Fontanesi, Laura Mulder, Martijn J. Bazin, Pierre-Louis Hommel, Bernhard Forstmann, Birte U. Brain Struct Funct Original Article Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data. Springer Berlin Heidelberg 2021-02-12 2021 /pmc/articles/PMC8036186/ /pubmed/33580320 http://dx.doi.org/10.1007/s00429-021-02231-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
Trutti, Anne C.
Fontanesi, Laura
Mulder, Martijn J.
Bazin, Pierre-Louis
Hommel, Bernhard
Forstmann, Birte U.
A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data
title A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data
title_full A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data
title_fullStr A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data
title_full_unstemmed A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data
title_short A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data
title_sort probabilistic atlas of the human ventral tegmental area (vta) based on 7 tesla mri data
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036186/
https://www.ncbi.nlm.nih.gov/pubmed/33580320
http://dx.doi.org/10.1007/s00429-021-02231-w
work_keys_str_mv AT truttiannec aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT fontanesilaura aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT muldermartijnj aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT bazinpierrelouis aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT hommelbernhard aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT forstmannbirteu aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT truttiannec probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT fontanesilaura probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT muldermartijnj probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT bazinpierrelouis probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT hommelbernhard probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata
AT forstmannbirteu probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata