Cargando…
A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data
Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036186/ https://www.ncbi.nlm.nih.gov/pubmed/33580320 http://dx.doi.org/10.1007/s00429-021-02231-w |
_version_ | 1783676854674128896 |
---|---|
author | Trutti, Anne C. Fontanesi, Laura Mulder, Martijn J. Bazin, Pierre-Louis Hommel, Bernhard Forstmann, Birte U. |
author_facet | Trutti, Anne C. Fontanesi, Laura Mulder, Martijn J. Bazin, Pierre-Louis Hommel, Bernhard Forstmann, Birte U. |
author_sort | Trutti, Anne C. |
collection | PubMed |
description | Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data. |
format | Online Article Text |
id | pubmed-8036186 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-80361862021-04-27 A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data Trutti, Anne C. Fontanesi, Laura Mulder, Martijn J. Bazin, Pierre-Louis Hommel, Bernhard Forstmann, Birte U. Brain Struct Funct Original Article Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data. Springer Berlin Heidelberg 2021-02-12 2021 /pmc/articles/PMC8036186/ /pubmed/33580320 http://dx.doi.org/10.1007/s00429-021-02231-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Article Trutti, Anne C. Fontanesi, Laura Mulder, Martijn J. Bazin, Pierre-Louis Hommel, Bernhard Forstmann, Birte U. A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data |
title | A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data |
title_full | A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data |
title_fullStr | A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data |
title_full_unstemmed | A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data |
title_short | A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data |
title_sort | probabilistic atlas of the human ventral tegmental area (vta) based on 7 tesla mri data |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036186/ https://www.ncbi.nlm.nih.gov/pubmed/33580320 http://dx.doi.org/10.1007/s00429-021-02231-w |
work_keys_str_mv | AT truttiannec aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT fontanesilaura aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT muldermartijnj aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT bazinpierrelouis aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT hommelbernhard aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT forstmannbirteu aprobabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT truttiannec probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT fontanesilaura probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT muldermartijnj probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT bazinpierrelouis probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT hommelbernhard probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata AT forstmannbirteu probabilisticatlasofthehumanventraltegmentalareavtabasedon7teslamridata |