Cargando…

Mind the food: behavioural characteristics and imaging signatures of the specific handling of food objects

In our world with nearly omnipresent availability of attractive and palatable high-calorie food, the struggle against overweight and obesity is a major individual and public health challenge. Preference for unhealthy food and eating-related habits have a strong influence on health, suggesting that h...

Descripción completa

Detalles Bibliográficos
Autores principales: Max, Sebastian M., Schroeder, Philipp A., Blechert, Jens, Giel, Katrin E., Ehlis, Ann-Christine, Plewnia, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036193/
https://www.ncbi.nlm.nih.gov/pubmed/33590302
http://dx.doi.org/10.1007/s00429-021-02232-9
Descripción
Sumario:In our world with nearly omnipresent availability of attractive and palatable high-calorie food, the struggle against overweight and obesity is a major individual and public health challenge. Preference for unhealthy food and eating-related habits have a strong influence on health, suggesting that high-calorie food triggers fast and near-automatic reaching and grasping movements. Therefore, it is important to better understand the specific neural mechanisms that control the handling of food involving a coordinated interplay between sensoric, motoric, and cognitive subsystems. To this end, 30 healthy participants (Ø BMI: 22.86 kg/m(2); BMI range: 19–30 kg/m(2); 23 females) were instructed to collect one of two concurrently presented objects (food vs. office tools) by manual movement in virtual reality (VR) and on a touchscreen. Parallel to the task in VR, regional brain activity was measured by functional near-infrared spectroscopy (fNIRS). In the VR and on the touchscreen, stimulus recognition and selection were faster for food than for office tools. Yet, food was collected more slowly than office tools when measured in VR. On the background of increased brain activity in the right dorsolateral prefrontal cortex (dlPFC) during food trials, this suggests more behavioural control activity during handling foods. In sum, this study emphasizes the role of the right dlPFC in faster recognition and selection of food as part of a food-valuation network, more controlled handling of food in the VR which highlights the relevance of medium for modelling food-specific embodied cognitions.