Cargando…
A numerical method for computing interval distributions for an inhomogeneous Poisson point process modified by random dead times
The inhomogeneous Poisson point process is a common model for time series of discrete, stochastic events. When an event from a point process is detected, it may trigger a random dead time in the detector, during which subsequent events will fail to be detected. It can be difficult or impossible to o...
Autor principal: | Peterson, Adam J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036215/ https://www.ncbi.nlm.nih.gov/pubmed/33742314 http://dx.doi.org/10.1007/s00422-021-00868-8 |
Ejemplares similares
-
COVID-19 transmission risk in Surabaya and Sidoarjo: an inhomogeneous marked Poisson point process approach
por: Choiruddin, Achmad, et al.
Publicado: (2023) -
On the Confidence Interval for the parameter of Poisson Distribution
por: Bityukov, S I, et al.
Publicado: (2000) -
Confidence intervals for the parameter of Poisson distribution in presence of background
por: Bityukov, S I, et al.
Publicado: (2000) -
Poisson point processes and their application to Markov processes
por: Itô, Kiyosi
Publicado: (2015) -
Poisson point processes: imaging, tracking, and sensing
por: Streit, Roy L
Publicado: (2010)