Cargando…
Discriminative Learning Approach Based on Flexible Mixture Model for Medical Data Categorization and Recognition
In this paper, we propose a novel hybrid discriminative learning approach based on shifted-scaled Dirichlet mixture model (SSDMM) and Support Vector Machines (SVMs) to address some challenging problems of medical data categorization and recognition. The main goal is to capture accurately the intrins...
Autores principales: | Alharithi, Fahd, Almulihi, Ahmed, Bourouis, Sami, Alroobaea, Roobaea, Bouguila, Nizar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036303/ https://www.ncbi.nlm.nih.gov/pubmed/33918120 http://dx.doi.org/10.3390/s21072450 |
Ejemplares similares
-
Entropy-Based Variational Scheme with Component Splitting for the Efficient Learning of Gamma Mixtures
por: Bourouis, Sami, et al.
Publicado: (2021) -
Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early COVID-19 Detection in Chest X-ray Images
por: Bourouis, Sami, et al.
Publicado: (2021) -
A Hybrid Convolutional Neural Network Model for Diagnosis of COVID-19 Using Chest X-ray Images
por: Kaur, Prabhjot, et al.
Publicado: (2021) -
Mixture models and applications
por: Bouguila, Nizar, et al.
Publicado: (2019) -
Human Activity Recognition with an HMM-Based Generative Model
por: Manouchehri, Narges, et al.
Publicado: (2023)