Cargando…
Novel Transfer Learning Approach for Medical Imaging with Limited Labeled Data
Deep learning requires a large amount of data to perform well. However, the field of medical image analysis suffers from a lack of sufficient data for training deep learning models. Moreover, medical images require manual labeling, usually provided by human annotators coming from various backgrounds...
Autores principales: | Alzubaidi, Laith, Al-Amidie, Muthana, Al-Asadi, Ahmed, Humaidi, Amjad J., Al-Shamma, Omran, Fadhel, Mohammed A., Zhang, Jinglan, Santamaría, J., Duan, Ye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036379/ https://www.ncbi.nlm.nih.gov/pubmed/33808207 http://dx.doi.org/10.3390/cancers13071590 |
Ejemplares similares
-
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
por: Alzubaidi, Laith, et al.
Publicado: (2021) -
Deepening into the suitability of using pre-trained models of ImageNet against a lightweight convolutional neural network in medical imaging: an experimental study
por: Alzubaidi, Laith, et al.
Publicado: (2021) -
Enhanced MIMO CSI Estimation Using ACCPM with Limited Feedback
por: Al-Asadi, Ahmed, et al.
Publicado: (2023) -
Deep Transfer Learning with Enhanced Feature Fusion for Detection of Abnormalities in X-ray Images
por: Alammar, Zaenab, et al.
Publicado: (2023) -
A microfluidic biosensor for the diagnosis of chronic wasting disease
por: Muhsin, Sura A., et al.
Publicado: (2023)