Cargando…
Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization
Intelligent fault diagnosis can be related to applications of machine learning theories to machine fault diagnosis. Although there is a large number of successful examples, there is a gap in the optimization of the hyper-parameters of the machine learning model, which ultimately has a major impact o...
Autores principales: | Kolar, Davor, Lisjak, Dragutin, Pająk, Michał, Gudlin, Mihael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036431/ https://www.ncbi.nlm.nih.gov/pubmed/33807427 http://dx.doi.org/10.3390/s21072411 |
Ejemplares similares
-
Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with Wide Three Axis Vibration Signal Input
por: Kolar, Davor, et al.
Publicado: (2020) -
Comparison of Novelty Detection Methods for Detection of Various Rotary Machinery Faults
por: Górski, Jakub, et al.
Publicado: (2021) -
New Fault Recognition Method for Rotary Machinery Based on Information Entropy and a Probabilistic Neural Network
por: Jiang, Quansheng, et al.
Publicado: (2018) -
A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
por: Ma, Shangjun, et al.
Publicado: (2019) -
Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
por: Li, Hongmei, et al.
Publicado: (2020)