Cargando…
Early-Life Development of the Bifidobacterial Community in the Infant Gut
The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036440/ https://www.ncbi.nlm.nih.gov/pubmed/33806135 http://dx.doi.org/10.3390/ijms22073382 |
_version_ | 1783676910680670208 |
---|---|
author | Saturio, Silvia Nogacka, Alicja M. Suárez, Marta Fernández, Nuria Mantecón, Laura Mancabelli, Leonardo Milani, Christian Ventura, Marco de los Reyes-Gavilán, Clara G. Solís, Gonzalo Arboleya, Silvia Gueimonde, Miguel |
author_facet | Saturio, Silvia Nogacka, Alicja M. Suárez, Marta Fernández, Nuria Mantecón, Laura Mancabelli, Leonardo Milani, Christian Ventura, Marco de los Reyes-Gavilán, Clara G. Solís, Gonzalo Arboleya, Silvia Gueimonde, Miguel |
author_sort | Saturio, Silvia |
collection | PubMed |
description | The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomic studies have shown that different factors, such as gestational age, delivery mode, or feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their impact on the specific bifidobacterial populations is not yet well understood. Here we studied the impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species were determined by q-PCR. Our results showed that the bifidobacterial population establishment is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative and quantitative changes. These data underline the need for understanding the impact of perinatal factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial populations such as Bifidobacterium. The data obtained provide indications for the selection of the species best suited for the development of bifidobacteria-based products for different groups of neonates and will help to develop rational strategies for favoring a healthy early microbiota development when this process is challenged. |
format | Online Article Text |
id | pubmed-8036440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80364402021-04-12 Early-Life Development of the Bifidobacterial Community in the Infant Gut Saturio, Silvia Nogacka, Alicja M. Suárez, Marta Fernández, Nuria Mantecón, Laura Mancabelli, Leonardo Milani, Christian Ventura, Marco de los Reyes-Gavilán, Clara G. Solís, Gonzalo Arboleya, Silvia Gueimonde, Miguel Int J Mol Sci Article The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomic studies have shown that different factors, such as gestational age, delivery mode, or feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their impact on the specific bifidobacterial populations is not yet well understood. Here we studied the impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species were determined by q-PCR. Our results showed that the bifidobacterial population establishment is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative and quantitative changes. These data underline the need for understanding the impact of perinatal factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial populations such as Bifidobacterium. The data obtained provide indications for the selection of the species best suited for the development of bifidobacteria-based products for different groups of neonates and will help to develop rational strategies for favoring a healthy early microbiota development when this process is challenged. MDPI 2021-03-25 /pmc/articles/PMC8036440/ /pubmed/33806135 http://dx.doi.org/10.3390/ijms22073382 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Saturio, Silvia Nogacka, Alicja M. Suárez, Marta Fernández, Nuria Mantecón, Laura Mancabelli, Leonardo Milani, Christian Ventura, Marco de los Reyes-Gavilán, Clara G. Solís, Gonzalo Arboleya, Silvia Gueimonde, Miguel Early-Life Development of the Bifidobacterial Community in the Infant Gut |
title | Early-Life Development of the Bifidobacterial Community in the Infant Gut |
title_full | Early-Life Development of the Bifidobacterial Community in the Infant Gut |
title_fullStr | Early-Life Development of the Bifidobacterial Community in the Infant Gut |
title_full_unstemmed | Early-Life Development of the Bifidobacterial Community in the Infant Gut |
title_short | Early-Life Development of the Bifidobacterial Community in the Infant Gut |
title_sort | early-life development of the bifidobacterial community in the infant gut |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036440/ https://www.ncbi.nlm.nih.gov/pubmed/33806135 http://dx.doi.org/10.3390/ijms22073382 |
work_keys_str_mv | AT saturiosilvia earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT nogackaalicjam earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT suarezmarta earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT fernandeznuria earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT manteconlaura earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT mancabellileonardo earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT milanichristian earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT venturamarco earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT delosreyesgavilanclarag earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT solisgonzalo earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT arboleyasilvia earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut AT gueimondemiguel earlylifedevelopmentofthebifidobacterialcommunityintheinfantgut |