Cargando…
A Deep-Learning Framework for the Detection of Oil Spills from SAR Data
Oil leaks onto water surfaces from big tankers, ships, and pipeline cracks cause considerable damage and harm to the marine environment. Synthetic Aperture Radar (SAR) images provide an approximate representation for target scenes, including sea and land surfaces, ships, oil spills, and look-alikes....
Autores principales: | Shaban, Mohamed, Salim, Reem, Abu Khalifeh, Hadil, Khelifi, Adel, Shalaby, Ahmed, El-Mashad, Shady, Mahmoud, Ali, Ghazal, Mohammed, El-Baz, Ayman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036558/ https://www.ncbi.nlm.nih.gov/pubmed/33800565 http://dx.doi.org/10.3390/s21072351 |
Ejemplares similares
-
A convolutional neural network for the screening and staging of diabetic retinopathy
por: Shaban, Mohamed, et al.
Publicado: (2020) -
A novel computer-aided diagnostic system for accurate detection and grading of liver tumors
por: Alksas, Ahmed, et al.
Publicado: (2021) -
The Role of Structure MRI in Diagnosing Autism
por: Ali, Mohamed T., et al.
Publicado: (2022) -
Development and Evaluation of a Novel Deep-Learning-Based Framework for the Classification of Renal Histopathology Images
por: Abu Haeyeh, Yasmine, et al.
Publicado: (2022) -
A Novel Framework for Early Detection of Hypertension using Magnetic Resonance Angiography
por: Kandil, Heba, et al.
Publicado: (2019)