Cargando…
A Comparative Study of Feature Selection Approaches for Human Activity Recognition Using Multimodal Sensory Data
Human activity recognition (HAR) aims to recognize the actions of the human body through a series of observations and environmental conditions. The analysis of human activities has drawn the attention of the research community in the last two decades due to its widespread applications, diverse natur...
Autores principales: | Amjad, Fatima, Khan, Muhammad Hassan, Nisar, Muhammad Adeel, Farid, Muhammad Shahid, Grzegorzek, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036571/ https://www.ncbi.nlm.nih.gov/pubmed/33805368 http://dx.doi.org/10.3390/s21072368 |
Ejemplares similares
-
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
por: Li, Frédéric, et al.
Publicado: (2018) -
Rank Pooling Approach for Wearable Sensor-Based ADLs Recognition
por: Nisar, Muhammad Adeel, et al.
Publicado: (2020) -
A Hierarchical Multitask Learning Approach for the Recognition of Activities of Daily Living Using Data from Wearable Sensors
por: Nisar, Muhammad Adeel, et al.
Publicado: (2023) -
AI Approaches towards Prechtl’s Assessment of General Movements: A Systematic Literature Review
por: Irshad, Muhammad Tausif, et al.
Publicado: (2020) -
Detection of Infantile Movement Disorders in Video Data Using Deformable Part-Based Model
por: Khan, Muhammad Hassan, et al.
Publicado: (2018)