Cargando…
Metalloproteinases in Ovarian Cancer
Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteoly...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036623/ https://www.ncbi.nlm.nih.gov/pubmed/33810259 http://dx.doi.org/10.3390/ijms22073403 |
_version_ | 1783676953624051712 |
---|---|
author | Carey, Preston Low, Ethan Harper, Elizabeth Stack, M. Sharon |
author_facet | Carey, Preston Low, Ethan Harper, Elizabeth Stack, M. Sharon |
author_sort | Carey, Preston |
collection | PubMed |
description | Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteolytic processes have been linked to cancer progression, particularly those facilitated by the matrix metalloproteinase (MMP) family. These proteases have been linked to enhanced migratory ability, extracellular matrix breakdown, and development of support systems for tumors. Several studies have reported the direct involvement of MMPs with ovarian cancer, as well as their mechanisms of action in the tumor microenvironment. MMPs play a key role in upregulating transcription factors, as well as the breakdown of structural proteins like collagen. Proteolytic mechanisms have been shown to enhance the ability of ovarian cancer cells to migrate and adhere to secondary sites allowing for efficient metastasis. Furthermore, angiogenesis for tumor growth and development of metastatic implants is influenced by upregulation of certain proteases, including MMPs. While proteases are produced normally in vivo, they can be upregulated by cancer-associated mutations, tumor–microenvironment interaction, stress-induced catecholamine production, and age-related pathologies. This review outlines the important role of proteases throughout ovarian cancer progression and metastasis. |
format | Online Article Text |
id | pubmed-8036623 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80366232021-04-12 Metalloproteinases in Ovarian Cancer Carey, Preston Low, Ethan Harper, Elizabeth Stack, M. Sharon Int J Mol Sci Review Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteolytic processes have been linked to cancer progression, particularly those facilitated by the matrix metalloproteinase (MMP) family. These proteases have been linked to enhanced migratory ability, extracellular matrix breakdown, and development of support systems for tumors. Several studies have reported the direct involvement of MMPs with ovarian cancer, as well as their mechanisms of action in the tumor microenvironment. MMPs play a key role in upregulating transcription factors, as well as the breakdown of structural proteins like collagen. Proteolytic mechanisms have been shown to enhance the ability of ovarian cancer cells to migrate and adhere to secondary sites allowing for efficient metastasis. Furthermore, angiogenesis for tumor growth and development of metastatic implants is influenced by upregulation of certain proteases, including MMPs. While proteases are produced normally in vivo, they can be upregulated by cancer-associated mutations, tumor–microenvironment interaction, stress-induced catecholamine production, and age-related pathologies. This review outlines the important role of proteases throughout ovarian cancer progression and metastasis. MDPI 2021-03-26 /pmc/articles/PMC8036623/ /pubmed/33810259 http://dx.doi.org/10.3390/ijms22073403 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Review Carey, Preston Low, Ethan Harper, Elizabeth Stack, M. Sharon Metalloproteinases in Ovarian Cancer |
title | Metalloproteinases in Ovarian Cancer |
title_full | Metalloproteinases in Ovarian Cancer |
title_fullStr | Metalloproteinases in Ovarian Cancer |
title_full_unstemmed | Metalloproteinases in Ovarian Cancer |
title_short | Metalloproteinases in Ovarian Cancer |
title_sort | metalloproteinases in ovarian cancer |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036623/ https://www.ncbi.nlm.nih.gov/pubmed/33810259 http://dx.doi.org/10.3390/ijms22073403 |
work_keys_str_mv | AT careypreston metalloproteinasesinovariancancer AT lowethan metalloproteinasesinovariancancer AT harperelizabeth metalloproteinasesinovariancancer AT stackmsharon metalloproteinasesinovariancancer |