Cargando…
EEG-Based Eye Movement Recognition Using Brain–Computer Interface and Random Forests
Discrimination of eye movements and visual states is a flourishing field of research and there is an urgent need for non-manual EEG-based wheelchair control and navigation systems. This paper presents a novel system that utilizes a brain–computer interface (BCI) to capture electroencephalographic (E...
Autores principales: | Antoniou, Evangelos, Bozios, Pavlos, Christou, Vasileios, Tzimourta, Katerina D., Kalafatakis, Konstantinos, G. Tsipouras, Markos, Giannakeas, Nikolaos, Tzallas, Alexandros T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036672/ https://www.ncbi.nlm.nih.gov/pubmed/33801663 http://dx.doi.org/10.3390/s21072339 |
Ejemplares similares
-
Assessing Electroencephalography as a Stress Indicator: A VR High-Altitude Scenario Monitored through EEG and ECG
por: Aspiotis, Vasileios, et al.
Publicado: (2022) -
Evaluating the Window Size’s Role in Automatic EEG Epilepsy Detection
por: Christou, Vasileios, et al.
Publicado: (2022) -
Alzheimer’s Disease and Frontotemporal Dementia: A Robust Classification Method of EEG Signals and a Comparison of Validation Methods
por: Miltiadous, Andreas, et al.
Publicado: (2021) -
EEG Window Length Evaluation for the Detection of Alzheimer’s Disease over Different Brain Regions
por: Tzimourta, Katerina D., et al.
Publicado: (2019) -
Improving the Accuracy of Low-Cost Sensor Measurements for Freezer Automation
por: Koritsoglou, Kyriakos, et al.
Publicado: (2020)