Cargando…

Ensemble CNN to Detect Drowsy Driving with In-Vehicle Sensor Data

Drowsy driving is a major threat to the safety of drivers and road traffic. Accurate and reliable drowsy driving detection technology can reduce accidents caused by drowsy driving. In this study, we present a new method to detect drowsy driving with vehicle sensor data obtained from the steering whe...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeon, Yongsu, Kim, Beomjun, Baek, Yunju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036701/
https://www.ncbi.nlm.nih.gov/pubmed/33805531
http://dx.doi.org/10.3390/s21072372
Descripción
Sumario:Drowsy driving is a major threat to the safety of drivers and road traffic. Accurate and reliable drowsy driving detection technology can reduce accidents caused by drowsy driving. In this study, we present a new method to detect drowsy driving with vehicle sensor data obtained from the steering wheel and pedal pressure. From our empirical study, we categorized drowsy driving into long-duration drowsy driving and short-duration drowsy driving. Furthermore, we propose an ensemble network model composed of convolution neural networks that can detect each type of drowsy driving. Each subnetwork is specialized to detect long- or short-duration drowsy driving using a fusion of features, obtained through time series analysis. To efficiently train the proposed network, we propose an imbalanced data-handling method that adjusts the ratio of normal driving data and drowsy driving data in the dataset by partially removing normal driving data. A dataset comprising 198.3 h of in-vehicle sensor data was acquired through a driving simulation that includes a variety of road environments such as urban environments and highways. The performance of the proposed model was evaluated with a dataset. This study achieved the detection of drowsy driving with an accuracy of up to 94.2%.