Cargando…
Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications
High-frequency ultrasound (HFUS) imaging has emerged as an essential tool for pre-clinical studies and clinical applications such as ophthalmic and dermatologic imaging. HFUS imaging systems based on array transducers capable of dynamic receive focusing have considerably improved the image quality i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036709/ https://www.ncbi.nlm.nih.gov/pubmed/33805048 http://dx.doi.org/10.3390/s21072275 |
_version_ | 1783676973708476416 |
---|---|
author | Lim, Hae Gyun Kim, Hyung Ham Yoon, Changhan |
author_facet | Lim, Hae Gyun Kim, Hyung Ham Yoon, Changhan |
author_sort | Lim, Hae Gyun |
collection | PubMed |
description | High-frequency ultrasound (HFUS) imaging has emerged as an essential tool for pre-clinical studies and clinical applications such as ophthalmic and dermatologic imaging. HFUS imaging systems based on array transducers capable of dynamic receive focusing have considerably improved the image quality in terms of spatial resolution and signal-to-noise ratio (SNR) compared to those by the single-element transducer-based one. However, the array system still suffers from low spatial resolution and SNR in out-of-focus regions, resulting in a blurred image and a limited penetration depth. In this paper, we present synthetic aperture imaging with a virtual source (SA-VS) for an ophthalmic application using a high-frequency convex array transducer. The performances of the SA-VS were evaluated with phantom and ex vivo experiments in comparison with the conventional dynamic receive focusing method. Pre-beamformed radio-frequency (RF) data from phantoms and excised bovine eye were acquired using a custom-built 64-channel imaging system. In the phantom experiments, the SA-VS method showed improved lateral resolution (>10%) and sidelobe level (>4.4 dB) compared to those by the conventional method. The SNR was also improved, resulting in an increased penetration depth: 16 mm and 23 mm for the conventional and SA-VS methods, respectively. Ex vivo images with the SA-VS showed improved image quality at the entire depth and visualized structures that were obscured by noise in conventional imaging. |
format | Online Article Text |
id | pubmed-8036709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80367092021-04-12 Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications Lim, Hae Gyun Kim, Hyung Ham Yoon, Changhan Sensors (Basel) Communication High-frequency ultrasound (HFUS) imaging has emerged as an essential tool for pre-clinical studies and clinical applications such as ophthalmic and dermatologic imaging. HFUS imaging systems based on array transducers capable of dynamic receive focusing have considerably improved the image quality in terms of spatial resolution and signal-to-noise ratio (SNR) compared to those by the single-element transducer-based one. However, the array system still suffers from low spatial resolution and SNR in out-of-focus regions, resulting in a blurred image and a limited penetration depth. In this paper, we present synthetic aperture imaging with a virtual source (SA-VS) for an ophthalmic application using a high-frequency convex array transducer. The performances of the SA-VS were evaluated with phantom and ex vivo experiments in comparison with the conventional dynamic receive focusing method. Pre-beamformed radio-frequency (RF) data from phantoms and excised bovine eye were acquired using a custom-built 64-channel imaging system. In the phantom experiments, the SA-VS method showed improved lateral resolution (>10%) and sidelobe level (>4.4 dB) compared to those by the conventional method. The SNR was also improved, resulting in an increased penetration depth: 16 mm and 23 mm for the conventional and SA-VS methods, respectively. Ex vivo images with the SA-VS showed improved image quality at the entire depth and visualized structures that were obscured by noise in conventional imaging. MDPI 2021-03-24 /pmc/articles/PMC8036709/ /pubmed/33805048 http://dx.doi.org/10.3390/s21072275 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Communication Lim, Hae Gyun Kim, Hyung Ham Yoon, Changhan Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications |
title | Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications |
title_full | Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications |
title_fullStr | Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications |
title_full_unstemmed | Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications |
title_short | Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications |
title_sort | synthetic aperture imaging using high-frequency convex array for ophthalmic ultrasound applications |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036709/ https://www.ncbi.nlm.nih.gov/pubmed/33805048 http://dx.doi.org/10.3390/s21072275 |
work_keys_str_mv | AT limhaegyun syntheticapertureimagingusinghighfrequencyconvexarrayforophthalmicultrasoundapplications AT kimhyungham syntheticapertureimagingusinghighfrequencyconvexarrayforophthalmicultrasoundapplications AT yoonchanghan syntheticapertureimagingusinghighfrequencyconvexarrayforophthalmicultrasoundapplications |