Cargando…
Enhanced Ion Cluster Size of Sulfonated Poly (Arylene Ether Sulfone) for Proton Exchange Membrane Fuel Cell Application
A successful approach towards enhancement in ion cluster size of sulfonated poly (arylene ether sulfone) (SPAES)-based membranes has been successfully carried out by encapsulating basic pendent branches as side groups. Modified SPAES was synthesized by condensation polymerization followed by bromina...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036791/ https://www.ncbi.nlm.nih.gov/pubmed/33807485 http://dx.doi.org/10.3390/polym13071111 |
Sumario: | A successful approach towards enhancement in ion cluster size of sulfonated poly (arylene ether sulfone) (SPAES)-based membranes has been successfully carried out by encapsulating basic pendent branches as side groups. Modified SPAES was synthesized by condensation polymerization followed by bromination with N-bromosuccinamide (NBS) and sulfonation by ring opening reaction. Various molar ratios of branched polyethyleneimine (PEI) were added to the SPAES and the developed polymer was designated as SPAES-x-PEI-y, where x denoted the number of sulfonating acid group per polymer chain and y represents the amount of PEI concentration. Polymer synthesis was characterized by (1)H-NMR (Nuclear magnetic resonance) and FT-IR (Fourier-transform infrared spectroscopy) analysis. A cumulative trend involving enhanced proton conductivity of the membranes with an increase in the molar ratio of PEI has been observed, clearly demonstrating the formation of ionic clusters. SPAES-140-PEI-3 membranes show improved proton conductivity of 0.12 Scm(−1) at 80 °C. Excellent chemical stability was demonstrated by the polymer with Fenton’s test at 80 °C for 24 h without significant loss in proton conductivity, owing to the suitability of the synthesized hybrid membrane for electrochemical application. Moreover, a single cell degradation test was conducted at 80 °C showing a power density at a 140 mWcm(−2) value, proving the stable nature of synthesized membranes for proton exchange membrane fuel cell application. |
---|