Cargando…
Bayesian Methods for Meta-Analyses of Binary Outcomes: Implementations, Examples, and Impact of Priors
Bayesian methods are an important set of tools for performing meta-analyses. They avoid some potentially unrealistic assumptions that are required by conventional frequentist methods. More importantly, meta-analysts can incorporate prior information from many sources, including experts’ opinions and...
Autores principales: | Al Amer, Fahad M., Thompson, Christopher G., Lin, Lifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036799/ https://www.ncbi.nlm.nih.gov/pubmed/33801771 http://dx.doi.org/10.3390/ijerph18073492 |
Ejemplares similares
-
Bayesian Meta-Analysis for Binary Data and Prior Distribution on Models
por: Negrín-Hernández, Miguel-Angel, et al.
Publicado: (2021) -
Bayesian variable selection for binary outcomes in high-dimensional genomic studies using non-local priors
por: Nikooienejad, Amir, et al.
Publicado: (2016) -
Empirical Comparisons of 12 Meta-analysis Methods for Synthesizing Proportions of Binary Outcomes
por: Lin, Lifeng, et al.
Publicado: (2021) -
A modified regression method to test publication bias in meta-analyses with binary outcomes
por: Jin, Zhi-Chao, et al.
Publicado: (2014) -
An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis
por: Spineli, Loukia M.
Publicado: (2019)