Cargando…

Effects of Exercise on the Oral Microbiota and Saliva of Patients with Non-Alcoholic Fatty Liver Disease

Exercise can be hypothesized to play an important role in non-alcoholic fatty liver disease (NAFLD) treatment by changing the oral bacterial flora and in the mechanism underlying periodontal disease. We performed salivary component analysis before and after an exercise regimen, and genome analysis o...

Descripción completa

Detalles Bibliográficos
Autores principales: Uchida, Fumihiko, Oh, Sechang, Shida, Takashi, Suzuki, Hideo, Yamagata, Kenji, Mizokami, Yuji, Bukawa, Hiroki, Tanaka, Kiyoji, Shoda, Junichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036855/
https://www.ncbi.nlm.nih.gov/pubmed/33810609
http://dx.doi.org/10.3390/ijerph18073470
Descripción
Sumario:Exercise can be hypothesized to play an important role in non-alcoholic fatty liver disease (NAFLD) treatment by changing the oral bacterial flora and in the mechanism underlying periodontal disease. We performed salivary component analysis before and after an exercise regimen, and genome analysis of the oral bacterial flora to elucidate the underlying mechanism. Obese middle-aged men with NAFLD and periodontal disease were allocated to 12-week exercise (n = 49) or dietary restriction (n = 21) groups. We collected saliva to compare the oral microflora; performed predictive analysis of metagenomic functions; and, measured the salivary immunoglobulin A, cytokine, bacterial lipopolysaccharide (LPS), and lactoferrin concentrations. The exercise group showed improvements in the clinical indices of oral environment. Salivary component analysis revealed significant reductions in LPS, and lactoferrin during the exercise regimen. Diversity analysis of oral bacterial flora revealed higher alpha- and beta-diversity after the exercise regimen. Analysis of the microbial composition revealed that the numbers of Campylobacter (+83.9%), Corynebacterium (+142.3%), Actinomyces (+75.9%), and Lautropia (+172.9%) were significantly higher, and that of Prevotella (−28.3%) was significantly lower. The findings suggest that an exercise regimen improves the oral environment of NAFLD patients by increasing the diversity of the oral microflora and reducing the number of periodontal bacteria that produce LPS and its capability.