Cargando…
Bayesian Regularized Artificial Neural Network Model to Predict Strength Characteristics of Fly-Ash and Bottom-Ash Based Geopolymer Concrete
Geopolymer concrete (GPC) offers a potential solution for sustainable construction by utilizing waste materials. However, the production and testing procedures for GPC are quite cumbersome and expensive, which can slow down the development of mix design and the implementation of GPC. The basic chara...
Autores principales: | Aneja, Sakshi, Sharma, Ashutosh, Gupta, Rishi, Yoo, Doo-Yeol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036869/ https://www.ncbi.nlm.nih.gov/pubmed/33915938 http://dx.doi.org/10.3390/ma14071729 |
Ejemplares similares
-
Performance of Fly Ash Geopolymer Concrete Incorporating Bamboo Ash at Elevated Temperature
por: Ishak, Shafiq, et al.
Publicado: (2019) -
Ambient Cured Fly Ash Geopolymer Coatings for Concrete
por: Biondi, L., et al.
Publicado: (2019) -
Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash
por: Kalaw, Martin Ernesto, et al.
Publicado: (2016) -
Prediction of the Compressive Strength of Fly Ash Geopolymer Concrete by an Optimised Neural Network Model
por: Khalaf, Ali Abdulhasan, et al.
Publicado: (2022) -
Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin
por: Barbhuiya, Salim, et al.
Publicado: (2022)