Cargando…
An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction
Fatigued driving is one of the main causes of traffic accidents. The electroencephalogram (EEG)-based mental state analysis method is an effective and objective way of detecting fatigue. However, as EEG shows significant differences across subjects, effectively “transfering” the EEG analysis model o...
Autores principales: | Zeng, Hong, Li, Xiufeng, Borghini, Gianluca, Zhao, Yue, Aricò, Pietro, Di Flumeri, Gianluca, Sciaraffa, Nicolina, Zakaria, Wael, Kong, Wanzeng, Babiloni, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036954/ https://www.ncbi.nlm.nih.gov/pubmed/33805522 http://dx.doi.org/10.3390/s21072369 |
Ejemplares similares
-
InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection
por: Zeng, Hong, et al.
Publicado: (2020) -
The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability
por: Di Flumeri, Gianluca, et al.
Publicado: (2019) -
EEG-Based Index for Timely Detecting User’s Drowsiness Occurrence in Automotive Applications
por: Di Flumeri, Gianluca, et al.
Publicado: (2022) -
Correlation and Similarity between Cerebral and Non-Cerebral Electrical Activity for User’s States Assessment
por: Borghini, Gianluca, et al.
Publicado: (2019) -
Label-Based Alignment Multi-Source Domain Adaptation for Cross-Subject EEG Fatigue Mental State Evaluation
por: Zhao, Yue, et al.
Publicado: (2021)