Cargando…
ImmunoAIzer: A Deep Learning-Based Computational Framework to Characterize Cell Distribution and Gene Mutation in Tumor Microenvironment
SIMPLE SUMMARY: A comprehensive evaluation of immune cell distribution in the tumor microenvironment (TME) and tumor gene mutation status may contribute to therapeutic optimization of cancer patients. In this study, we aimed to demonstrate that deep learning (DL)-based computational frameworks have...
Autores principales: | Bian, Chang, Wang, Yu, Lu, Zhihao, An, Yu, Wang, Hanfan, Kong, Lingxin, Du, Yang, Tian, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036970/ https://www.ncbi.nlm.nih.gov/pubmed/33916145 http://dx.doi.org/10.3390/cancers13071659 |
Ejemplares similares
-
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
por: Hollandi, Reka, et al.
Publicado: (2020) -
Editorial: Immuno-Metabolism in Tumor Microenvironment
por: Prado-García, Heriberto, et al.
Publicado: (2017) -
A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology
por: Hu, Bian, et al.
Publicado: (2022) -
Immuno-Metabolism and Microenvironment in Cancer: Key Players for Immunotherapy
por: Giannone, Gaia, et al.
Publicado: (2020) -
Endometrial Carcinoma: Immune Microenvironment and Emerging Treatments in Immuno-Oncology
por: Rousset-Rouviere, Sandrine, et al.
Publicado: (2021)